بهبود قابل توجهی در خواص تضعیف پرتو گاما شیشه‌های بورات با استفاده از تقویت‌کننده اکسید‌ بیسموت

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده علوم پایه، گروه فیزیک، دانشگاه امام حسین(ع)، تهران، ایران

10.22052/rsm.2025.255795.1084

چکیده

این مطالعه به بررسی خواص محافظتی پرتو گاما و نوترون شیشه‌های بورات آلاییده شده با Bi₂O₃ (5-25 مول درصد) با استفاده از شبیه‌سازی‌های Geant4 در محدوده انرژی 15 کیلوالکترون‌ولت تا 10 مگاالکترون‌ولت بررسی شد. ضریب تضعیف جرمی محاسبه شد که امکان تعیین پارامترهای کلیدی محافظتی پرتو گاما را فراهم ‌کرد. نتایج، افزایش قابل توجهی در عملکرد محافظتی پرتو گاما با افزایش محتوای Bi₂O₃ را نشان داد. ضریب تضعیف جرمی از 58/33 در انرژی‌های پایین تا 027/0سانتی‌متر مربع بر گرم در انرژی‌های بالا متغیر بود که در آن Glaas-5 بالاترین ضریب تضعیف جرمی را نشان داد. همچنین پارامترهای کلیدی دیگری از جمله ضریب تضعیف خطی، میانگین مسیر آزاد، ضخامت لایه دهم و راندمان محافظت از پرتو را استخراج کردیم. نکته مهم این است که ضخامت مورد نیاز برای محافظتی پرتو گاما مؤثر به‌طور قابل توجهی کاهش یافت. لایه مقدار دهم (TVL) برای فوتون‌های 1 مگاالکترون‌ولت از 5/10 سانتی‌متر برای شیشه حاوی ۵٪ اکسید بیسموت به تنها 8/7 سانتی‌متر برای نمونه حاوی ۲۵٪ اکسید بیسموت کاهش یافت. علاوه بر این، راندمان محافظت در برابر پرتو برای انرژی‌های کمتر از ۱۵۰ کیلوالکترون‌ولت نزدیک به 100 درصد بود. سطح مقطع حذف نوترون سریع نیز با افزایش محتوای بیسموت افزایش یافت. ما نتیجه می‌گیریم که حاوی ۲۵٪ اکسید بیسموت (Glass-5) خواص محافظتی بهتری برای فوتون‌های گاما و نوترون‌های سریع نشان می‌دهد و آن را به گزینه‌ای امیدوارکننده برای کاربردهای محافظت در برابر تابش تبدیل می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Significant improvement in gamma-ray attenuation properties of borate glasses using bismuth oxide enhancer

نویسندگان [English]

  • Mohamadreza Alipoor
  • Mahdi Eshghi
Department t of Physics, Imam Hossein Comprehensive University, Tehran, Iran
چکیده [English]

This study investigated the gamma-ray and neutron shielding properties of borate glasses doped with Bi₂O₃ (5-25 mol %) using Geant4 simulations in the energy range of 15 keV to 10 MeV. The mass attenuation coefficient was calculated, which allowed the determination of key gamma-ray shielding parameters. The results showed a significant increase in gamma-ray shielding performance with increasing Bi₂O₃ content. The mass attenuation coefficient ranged from 33.58 at low energies to 0.027 cm2/g at high energies, where Glaas-5 showed the highest mass attenuation coefficient. We also extracted other key parameters, including linear attenuation coefficient, mean free path, tenth layer thickness, and shielding efficiency. Importantly, the thickness required for effective gamma-ray shielding was significantly reduced. The TVL for 1 MEV photons was reduced from 10.5 cm for the glass containing 5% bismuth oxide to only 7.8 cm for the sample containing 25% bismuth oxide. Furthermore, the radiation shielding efficiency was close to 100% for energies below 150 keV. The fast neutron removal cross section also increased with increasing bismuth content. We conclude that the glass containing 25% bismuth oxide (Glass-5) exhibits better shielding properties for gamma photons and fast neutrons, making it a promising option for radiation shielding applications.

کلیدواژه‌ها [English]

  • Gamma-ray
  • Fast neutrons
  • Simulation
  • Geant4
  • Borate glass
  1. M.S. Al-Buriahi, C. Eke, S. Alomairy, C. Mutuwong, N. Sfina. Microhardness and gamma-ray attenuation properties of lead iron phosphate glasses. J. Mater. Sci. Mater. Elect. 32 (10) (2021) 13906–13916.
  2. Y. Al-Hadeethi, M. Sayyed, Y. Rammah. Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3–CaO glasses. Ceramics Int. 46 (2) (2019) 2055–2062.
  3. B. Albarzan, A.H. Almuqrin, E.A. Wahab, K. Mahmoud, K. Shaaban, M. Sayyed. Effect of Fe2O3 doping on structural, FTIR and radiation shielding characteristics of aluminum-lead-borate glasses. Prog. Nucl. Energy 141 (2021) 103931.
  4. I. Boukhris, I. Kebaili, A. Al-Buriahi, A. Abouhaswa, B. Tonguc. Photon and electron attenuation parameters of phosphate and borate bioactive glasses by using Geant4 simulations. Ceramics Int. 46 (15) (2020) 24435–24442.
  5. M. Sayyed, H. Tekin, O. Agar. Gamma photon and neutron attenuation properties of MgO–BaO–B2O3–TeO2– Cr2O3 glasses: The role of TeO2. Radiat. Phys. Chem. 163 (2019) 58–66.
  6. A. Saeed, R.M.E. Shazly, Y.H. Elbashar, A.M.A . ElAzm, M.M. El-Okr, M.N.H. Comsan, et al. Gamma ray attenuation in a developed borate glass system. Radiat. Phys. Chem. 102 (2014)167–170.
  7. P. Limkitjaroenporn, J. Kaewkhao, P. Limsuwan, W. Chewpraditkul. Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses. J. Phys. Chem. Solids 72 (4) (2011) 245–251.
  8. S. Kaur, K.J. Singh. Investigation of lead borate glasses doped with aluminum oxide as gamma ray shielding materials. Ann. Nucl. Energy 63 (2013) 350–354.
  9. G. Lakshminarayana, H.O. Tekin, M.G. Dong, AlBuriahi, D.E. Lee, J. Yoon, T. Park. Comparative assessment of fast and thermal neutrons and gamma radiation protection qualities combined with mechanical factors of different borate-based glass systems. Res. Phys. 37 (2022) 105527. 
    1. Al-Hadeethi, M.I. Sayyed. BaO–Li2O–B2O3 glass systems: Potential utilization in gamma radiation protection. Prog. Nucl. Energy 129 (2020) 103511.
    2. Al-Ghamdi, M.I. Sayyed, A. Kumar, S. Yasmin, B.O. Elbashir, A.H. Almuqrin. Effect of PbO and B2O3 on the physical, structural, and radiation shielding properties of PbO-TeO2-MgO-Na2O-B2O3 glasses. Sustainability 14 (15) (2022) 9695.
    3. H.A. Mhareb, M. Alqahtani, F. Alshahri, Y.S.M. Alajerami, N. Saleh, N. Alonizan, et al. The impact of barium oxide on physical, structural, optical, and shielding features of sodium zinc borate glass. J. Non-Crystalline Solids 541 (2020) 120090.
    4. S. Al-Buriahi, R. Kurtulus, C. Eke, S. Alomairy, I.O. Olarinoye. An insight into advanced glass systems for radiation shielding applications: A review on different modifiers and heavy metal oxides-based glasses. Heliyon 10 (22) (2024) e40249.
    5. S. Rammah, G. Kilic, R. El-Mallawany, U.G. Issever, F.I. El-Agawany. Investigation of optical, physical, and gamma-ray shielding features of novel vanadyl boro-phosphate glasses. J. Non-Crystalline Solids 533 (2020) 119905.
    6. O. Tekin, E.E. Altunsoy, E. Kavaz, M.I. Sayyed, O. Agar, M. Kamislioglu. Photon and neutron shielding performance of boron phosphate glasses for diagnostic radiology facilities. Res. Phys. 12 (2019) 1457–1464.
    7. Hasegawa. Optical properties of Bi2O3–TeO2–B2O3 glasses. J. Non-Crystalline Solids 357 (15) (2011) 2857–2862.
    8. Marltan, P. Venkateswara Rao, H.O. Tekin, M.I. Sayyed, R. Klement, D. Galusek, G. Lakshminarayana, et al. Analysis of red mud doped Bi2O3-B2O3-BaO glasses for application as glass solder in radiation shield repair using MCNPX simulation. Ceram. Int. 45 (2019) 7619–7626.
    9. Wang, B. Lai, Y. Hsu, C. Lu. Dielectric properties of CaO–B2O3–SiO2 glass-ceramic systems in the millimeter-wave frequency range of 20–60 GHz. Ceramics Int. 47(16) (2021b) 22627–22635.
    10. Y. Al-Hadeethi, M.I. Sayyed. BaO–Li2O–B2O3 glass systems: Potential utilization in gamma radiation protection. Prog. Nucl. Energy 129 (2020) 103511.
    11. H. Al-Ghamdi, M.I. Sayyed, A. Kumar, S. Yasmin, B.O. Elbashir, A.H. Almuqrin. Effect of PbO and B2O3 on the physical, structural, and radiation shielding properties of PbO-TeO2-MgO-Na2O-B2O3 glasses. Sustainability 14 (15) (2022) 9695.
    12. M.H.A. Mhareb, M. Alqahtani, F. Alshahri, Y.S.M. Alajerami, N. Saleh, N. Alonizan, et al. The impact of barium oxide on physical, structural, optical, and shielding features of sodium zinc borate glass. J. Non-Crystalline Solids 541 (2020) 120090.
    13. M.S. Al-Buriahi, R. Kurtulus, C. Eke, S. Alomairy, I.O. Olarinoye. An insight into advanced glass systems for radiation shielding applications: A review on different modifiers and heavy metal oxides-based glasses. Heliyon 10 (22) (2024) e40249.
    14. Y.S. Rammah, G. Kilic, R. El-Mallawany, U.G. Issever, F.I. El-Agawany. Investigation of optical, physical, and gamma-ray shielding features of novel vanadyl boro-phosphate glasses. J. Non-Crystalline Solids 533 (2020) 119905.
    15. H.O. Tekin, E.E. Altunsoy, E. Kavaz, M.I. Sayyed, O. Agar, M. Kamislioglu. Photon and neutron shielding performance of boron phosphate glasses for diagnostic radiology facilities. Res. Phys. 12 (2019) 1457–1464.
    16. T. Hasegawa. Optical properties of Bi2O3–TeO2–B2O3 glasses. J. Non-Crystalline Solids 357 (15) (2011) 2857–2862.
    17. W. Marltan, P. Venkateswara Rao, H.O. Tekin, M.I. Sayyed, R. Klement, D. Galusek, G. Lakshminarayana, et al. Analysis of red mud doped Bi2O3-B2O3-BaO glasses for application as glass solder in radiation shield repair using MCNPX simulation. Ceram. Int. 45 (2019) 7619–7626.
    18. S. Wang, B. Lai, Y. Hsu, C. Lu. Dielectric properties of CaO–B2O3–SiO2 glass-ceramic systems in the millimeter-wave frequency range of 20–60 GHz. Ceramics Int. 47(16) (2021b) 22627–22635.
    19. G. ALMisned, G. Bilal, D.S. Baykal, F.T. Ali, G. Kilic, H.O. Tekin. Bismuth (III) oxide and boron (III) oxide substitution in bismuth-boro-zinc glasses: A focusing on nuclear radiation shielding properties. Optik 272 (2022) 170214.
    20. M. Ezzeldin, L.M. Al-Harbi, Sadeq, A.E.R. Mahmoud, M.A. Muhammad, H.A. Ahmed. Impact of CdO on optical, structural, elastic, and radiation shielding parameters of CdO–PbO–ZnO–B2O3–SiO2 glasses. Ceramics Int. 49(11) (2023) 19160–19173.
    21. H.O. Tekin, E. Kavaz, E.E. Altunsoy, M. Kamislioglu, O. Kilicoglu, O. Agar, M.I. Sayyed, N. Tarhan. Characterization of a broad range gamma-ray and neutron shielding properties of MgO-Al2O3-SiO2-B2O3 and Na2O-Al2O3-SiO2 glass systems. J. Non-Crystalline Solids. 518 (2019) 92–102.
    22. L. Zhang, Q. Sun, J. Wang, Z. Zhang, W. Zhang, J. Wang, H. Chen, M. Li. Effect of SrO content on microstructure of Bi2O3-B2O3-ZnO-BaO-SrO low-melting glass frit and joining performance of sodalime glass substrates. J. Alloys Compd. 872 (2021) 159707.
    23. W. Guo, L. Fu, P. He. Crystallization behavior in Bi2O3-B2O3-ZnO glass braze and its application for joining ferrite ceramics at a relatively low temperature. Crystals 11 (8) (2021) 1007.
    24. K. Singh, S. Kaur, R. Kaundal. Comparative study of gamma ray shielding and some properties of PbO–SiO2–Al2O3 and Bi2O3–SiO2–Al2O3 glass systems. Radiat. Phys. Chem. 96 (2013) 153–157.
    25. A. Kozlovskiy, M. Zdorovets. Effect of doping of Ce4+/3+ on optical, strength and shielding properties of (0.5-x) TeO2-0.25MoO-0.25Bi2O3-xCeO2 glasses. Mater. Chem. Phys. 263 (2021) 124444.
    26. S. Kaewjaeng, N. Chanthima, J. Thongdang, S. Reungsri, S. Kothan, J. Kaewkhao. Synthesis and radiation properties of Li2O-BaO-Bi2O3-P2O5 glasses. Mater. Today Proc. 43 (2021) 2544–2553.
    27. M. R. Alipoor, M. Eshghi, Simulation and extraction Protective properties of bismuth-based heterojunction Nanocomposites for shielding against gamma rays. Nano World 20(74) (2024) 34-26.
    28. W. Cheewasukhanont, P. Limkitjaroenporn, S. Kaewjaeng, W. Chaiphaksa, W. Hongtong, J. Kaewkhao. Development of bismuth sodium borate glasses for radiation shielding material. Mater. Today Proc. 43 (2021) 2508–15.
    29. D. A. Aloraini, A.H. Almuqrin, A. Saeed. Impact of Bi3+, Ba2+, and Pb2+ ions on the structural, thermal, mechanical, optical, and gamma ray shielding performance of borosilicate glass. Optical Quantum Elect. 56(1) (2023) 126.
    30. D. Möncke, E.I. Kamitsos, D. Palles, R. Limbach, A. Winterstein-Beckmann, T. Honma, et al. Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties. J. Chem. Phys. 145 (12) (2016) 124501.
    31. K. Maheshvaran, K. Kannan, M. Vijayakumar, C. Selvakumar, S.R. Atithya, A.G. Al-Sehemi, N. Basavegowda. Monte Carlo Simulation and Comprehensive Analysis of Bismuth Borate Glasses: Structural, Elastic, Optical, and Radiation Shielding Properties for Radioactive Waste Management applications. Ceramics Int. 51 (13) (2025) 17641-17656.
    32. K. Kaur, K.J. Singh, V. Anand. Structural properties of Bi2O3–B2O3–SiO2–Na2O glasses for gamma ray shielding applications. Radiat. Phys.Chem. 120 (2015) 63–72.
    33. M.S. Al-Buriahi, H. Arslan, H.O. Tekin, V.P. Singh, B.T. Tonguc. MoO3-TeO2 glass system for gamma ray shielding applications. Mater. Res. Express 7 (2) (2020) 025202.
    34. M.R. Alipoor, M. Eshghi. Nickel/Multiwalled carbon nanotube composites as Gamma-Ray shielding. Nano 19 (06) (2024) 2450027.
    35. M.I. Sayyed, H.O. Tekin, E.E. Altunsoy, S.S. Obaid, M. Almatari. Radiation shielding study of tellurite tungsten glasses with different antimony oxide as transparent shielding materials using MCNPX code. J. Non-Crystalline Solids 498 (2018) 167–172.