کالیبراسیون توان راکتور مینیاتوری با استفاده از آشکارسازهای ردپای حالت جامد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی انرژی، دانشگاه صنعتی شریف، 8639-11365، تهران ، ایران

2 انرژی اتمی ایران، پژوهشکده راکتور و ایمنی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، 3486-11365، تهران ، ایران

10.22052/rsm.2024.253803.1042

چکیده

روش‌­های مختلفی برای اندازه­‌گیری توان راکتور وجود دارد. در راکتورهای هسته­‌ای توان با شار نوترون رابطه مستقیم دارد، بنابراین روش معمول برای اندازه‌گیری توان، تشخیص شار نوترون در قلب راکتور است. راکتور چشمه نوترون مینیاتوری (MNSR[1]) برای تعیین توان از دو آشکارساز نوترون اتاقک شکافت (FC[2]) متصل به سیستم­‌های کنترلی کامپیوتر و کنسول استفاده می­‌کند. این آشکارسازها ابزار نشان­‌دهنده توان راکتور هستند و صحت خروجی آن‌ها در دقت نتایج آزمایشات و ایمنی راکتور نقش به‌سزایی دارد. در نتیجه کالیبراسیون این آشکارسازها ضروری است. نکته حائز اهمیت این است که، اندازه‌گیری‌های مربوط به کالیبراسیون باید در یک محیط نوترون-گاما بسیار شبیه به محیطی که آشکارساز بعداً در آن استفاده می‌شود، انجام شود. در این مطالعه کالیبراسیون آشکارسازهای اتاقک شکافت در قلب راکتور مینیاتوری با استفاده از آشکارسازهای ردپای هسته‌­ای حالت جامد (SSNTD[3]) انجام شده است. ضریب کالیبراسیون آشکارسازهای متصل به سیستم کنترلی کامپیوتر و کنسول به ترتیب برابر 02/1 و 88/0 هستند.
[1] Miniature Neutron Source Reactor
[2] Fission Chamber                    
[3] Solid-State Nuclear Track Detectors
 

کلیدواژه‌ها


عنوان مقاله [English]

Power calibration of MNSR using solid state track detector

نویسندگان [English]

  • Afrouz Asgari 1 2
  • Seyed Abolfazl Hosseini 1
  • Mohammad Hosein Choopan Dastjerdi 2
  • Javad Mokhtari 2
1 Department of Energy Engineering, Sharif University of Technology, 11365-8639, Tehran, Iran|Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, 11365-3486, Iran
2 Department of Energy Engineering, Sharif University of Technology, 11365-8639, Tehran, Iran|Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, 11365-3486, Iran
چکیده [English]

There are several methods to measure the reactor power. Since the power is directly related to the neutron flux in a reactor, the usual way to measure the power is to detect the neutron flux in the reactor core. The miniature neutron source reactor (MNSR) uses two fission chamber (FC) neutron detectors connected to computer and console control systems to determine the reactor power. These instruments are indicators of power, therefore the output of them has a significant role in reactor safety and needs to be calibrated. Importantly, the calibration measurements should be performed in a neutron-gamma environment very similar to the environment in which they will be used later. The aim of this study is to calibrate the fission chamber detectors in the core of the reactor by using the solid-state nuclear trace detector (SSNTD). The calibration factors of the FC detector related to the computer and control systems are equal to 1.02 and 0.88, respectively.

کلیدواژه‌ها [English]

  • miniature neutron source reactor (MNSR)
  • fission chamber (FC) neutron detector
  • solid state nuclear trace detector (SSNTD)
  • reactor power
  • calibration factor
  1. J. A. Hearne, P. V. Tsvetkov. Three-dimensional reactor power profile reconstruction using Cerenkov radiation. Ann. Nucl. Energy 142 (2020) 107426.
  2. M. Jalali, M. Abdi, M. Mostajaboddavati. Reactor power measurement by gamma and neutron radiation in heavy water zero power reactor (HWZPR). Ann. Nucl. Energy 57 (1) (2013) 368-374.
  3. S. E. Jarman, J. M. Brushwood, P. A. Beeley, R. N. Kuperus. Determination of in-core power in the LFR 30 KW argonaut reactor by measurement of 16N and 18F in the primary coolant (INIS-XA-C--029). IAEA, 2001.
  4. H. A. Armozd, M. Gharib, H. Afarideh. Determination of Tehran research reactor power by 16N gamma detection, Ann. Nucl. Energy 38 (1) (2011) 2667-2672.
  5. Yu. V. Klimov, V.  I. Kopeikin, L. A. Mikaélyan, K. V. Ozerov, V. V. Sinev. Neutrino method remote measurement of reactor power and power output. Atomic Energy 76 (2) (1994) 123-127.
  6. A. Gomez, R. Waldman, E. Laggiard, Measurement of power in research reactors using the neutron noise technique. Ann. Nucl. Energy 19 (5) (1992) 267-285.
  7. E. L. Mac Connachie, D. R. Novog. Measurement, simulation and uncertainty quantification of the neutron flux at the McMaster nuclear reactor. Ann. Nucl. Energy 151 (2021) 107879.
  8. L. Sang-hwa, P.Byung-Gun. Development of B and BN thin films for in situ neutron beam monitoring. Nucl. Eng. Des. 390 (1-3) (2022) 111692.
  9. Q. Zhang, B. Deng, X. Liu, C. Li, Y. Sang, L. Cao, G. Bi, C. Tang, P. Zhang, D. Tong, Y. Li. Deconvolution-based real-time neutron flux reconstruction for Self-Powered Neutron Detector. Nucl. Eng. Des. 326 (2018) 261-267.
  10. M. Hashemi-Tilehnoee and K. Hadad, Optimizing the performance of a neutron detector in the power monitoring channel of Tehran Research Reactor (TRR), Nucl. Eng. Des. 239 (7) (2009) 1260-1266.
  11. S. Joo, J. B. Lee, S. M. Seo, Calibration of digital wide-range neutron power measurement channel for open-pool type research reactor. Nucl. Eng. Technol. 50 (1) (2018) 203-210.
  12. T. Goričanec, G. Žerovnik, L. Barbot, D. Fourmentel, C. Destouches, A. Jazbec, L. Snoj. Evaluation of neutron flux and fission rate distributions inside the JSI TRIGA Mark II reactor using multiple in-core FCs. Ann. Nucl. Energy. 111 (2018) 407-440.
  13. G. Žerovnik, T. Kaiba, V. Radulović, A. Jazbec, S. Rupnik, L. Barbot, D. Fourmentel, L. Snoj. Validation of the neutron and gamma fields in the JSI TRIGA reactor using in-core fission and ionization chambers. Appl. Radiat. Isot. 96 (2015) 27-35.
  14. G. F. Knoll, Radiation Detection and Measurement. 4th ed. John Wiley & Sons, Inc., Hoboken. New York, 2010.
  1. Fanny, L. Vincent, M. Jean-Baptiste, Developing and testing a miniature fiber-coupled scintillator for in-core neutron counting in CROCUS, EPJ Web of Conferences, (2020).
  2. Žerovnik, L. Snoj, A. Trkov, L. Barbot, D. Fourmentel, J. -F. Villard. Measurements of thermal power at the TRIGA mark II reactor in Ljubljana using multiple detectors, IEEE Trans Nucl Sci. 61 (5) (2014) 2527-2531.
  3. E. Piesch, B. Burgkhardt, D. Singh. Properties of thermoluminescence dosemeters after high gamma irradiation. Scharmann, A. (Hrsg.): Proc. of the 5. International Conference on Luminescence Dosimetry, Sao Paulo, Brazil, February 14-17, 1977. Giessen: Justus-Liebig-Univ. 1977. S. 94-102.
  4. Y. Ould Salem, H. Elazhar, I. Traore, J. Riffaud, A. Nourreddine, RPL neutron dosimetry in n-γ fields in comparison with polymer detectors type CR-39. Polymers (Basel) 14 (9) (2022) 1801.
  5. J. Sadeghzadeh, N. Nassiri Mofakham, Z. Khajehmiri, Measurement of absolute neutron flux in LWSCR based on the nuclear track method. Ann. Nucl. Energy 45 (2012) 166-169.
  6. Z. Ghasemi, M. Hassanvand, M. C. Dastjerdi, & J. Mokhtari, Design of a radiation shield for an HPGe detector for a reactor-based PGNAA facility. Radiat. Phys. Chem. 210 (2023) 111045.
  7. M. Vatani, M. Hassanvand, J. Mokhtari, M. H. Choopan Dastjerdi. Design of an in-tank thermal neutron beam for PGNAA application at Isfahan MNSR. Nucl. Eng. Des. 412 (2023) 112451.
  8. M. H. Choopan Dastjerdi, J. Mokhtari, A. Asgari, E. Ghahremani, A neutron radiography beamline relying on the Isfahan Miniature Neutron Source Reactor. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip 928 (2019) 20-25.
  9. J. Mokhtari, M. H. Choopan Dastjerdi, Development and characterization of a large thermal neutron beam for neutron radiography at Isfahan MNSR. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip 1051 (2023) 168209.
  10. Y. Abbassi, S. M. Mirvakili, J. Mokhtari, Development of a fast thermal-hydraulic model to simulate heat and fluid flow in MNSR. Ann. Nucl. Energy 178 (2022) 109371.
  11. J. Mokhtari, F. Faghihi, M. C. Choopan Dastjerdi, J. Khorsandi. Neutronic feasibility study of using a multipurpose MNSR for BNCT, NR, and NAA. Appl Radiat Isot. 161 (2020) 109147.
  12. J. Mokhtari, F. Faghihi, J. Khorsandi, Design and optimization of the new LEU MNSR for neutron radiography using thermal column to upgrade thermal flux. Prog. Nucl. Energy 100 (2017) 221-232.
  13. A. Asgari, S. A. Hosseini, Rapid quantitative elemental analysis using artificial neural network for case study of Isfahan Miniature Neutron Source Reactor. J. Radioanal. Nucl. Chem. 331 (2022) 4479-4487.
  14. A. Moslehi, M. H. Choopan Dastjerdi, F. Torkzadeh, J. Mokhtari, Feasibility study of Isfahan MNSR as a calibration thermal neutron source. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip 1024 (2022) 166026.
  15. A. Asgari, S. A. Hosseini, M. H. Choopan Dastjerdi, J. Mokhtari. Determination of the linear behavior of FC detectors in Isfahan MNSR using ex-core offline and online experiments. Nucl. Eng. Des. 415 (2023) 112681.
  16. E. Teimoory, M. A. Allaf, J. Mokhtari, M. H. Choopan Dastjerdi, Development and characterization of fission chamber neutron detectors in Isfahan miniature neutron source reactor. Radiat. Phys. Chem. 215 (2024) 111360.