مشخصه یابی ترکیب BCN با استفاده از روش گسیل پرتوگامای القایی با دوترون

نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده فیزیک و شتابگرها، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، تهران، ایران

چکیده

این مقاله به معرفی روش گسیل پرتوگامای القایی با دوترون (DIGE) برای آنالیز کمی عناصر تشکیل‌دهنده نمونه‌های BCN می‌پردازد. ماده BCN یک نیمه‌رسانای غیرفلزی است که ساختار مشابه گرافن دارد و خواص آن به‌شدت به نسبت ترکیبات عناصر تشکیل‌دهنده آن یعنی بور، کربن و نیتروژن وابسته است. ازاین‌رو آنالیز کمی آن بسیار حائز اهمیت است. روش DIGE یکی از روش‌های مبتنی بر آنالیز با باریکه یونی است که امکان اندازه‌گیری هم‌زمان عناصر سبک مانند بور، کربن، نیتروژن، اکسیژن و ... را فراهم می‌آورد، که گزینه مناسبی برای مشخصه یابی نمونه‌های BCN است. نمونه نیترید کربن گرافیتی(g-C3N4) که در آن بور به‌صورت ناخالصی واردشده است (BCN) با حرارت دادن تیوره، CH4N2S ، و اضافه کردن اسید بوریک به آن سنتز شد. نمونه‌های g-C3N4و BCN سنتز شده با استفاده از روشهای پراش پرتوایکس (XRD) و طیف‌سنجی تبدیل فوریه مادون‌قرمز (FTIR) موردمطالعه قرار گرفتند تا مشخص شود که فرم درستی از نمونه‌ها رشد داده‌شده است و سپس غلظت عناصر تشکیل‌دهنده در این نمونه‌ها با اندازه‌گیری پرتوهای گامای گسیل‌شده از واکنشهای11B(d,pγ1-0)12B، 14N(d,pγ4-1)13N و 12C(d,pγ1-0)13Cتعیین شدند. نتایج نشان دادند که نسبت کربن و نیتروژن در نمونه‌های g-C3N4و BCN سنتز شده تقریباً 71/0 است و بور بصورت ناخالصی به مقدار 6% در نمونه BCN وارد شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Characterization of BCN compound using deuteron induced gamma-ray emission method

نویسندگان [English]

  • Alireza Jokar
  • Sepideh Shafiei
  • Hossein Rafi-Kheiri
Physics and accelerators research School, Nuclear Science and Technology Research Institute, AEOI, Tehran, Iran
چکیده [English]

This paper introduces the deuteron-induced gamma-ray emission technique (DIGE) for the quantification of BCN samples. BCN is a metal-free semiconductor that has a graphene-like structure and its properties are strongly dependent on the composition of the constituent elements, i.e. boron, carbon, and nitrogen. So, the quantitative analysis of BCN is essential. DIGE is an ion beam analysis method that simultaneously measures light elements such as boron, carbon, nitrogen, oxygen and etc. Therefore, it is a proper method for characterizing BCN samples. A Boron-doped graphene carbon nitride (g-C3N4) was synthesized via heating thiourea and subsequently adding boric acid. The synthesized g-C3N4 and BCN were studied using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) to determine that the correct form of the samples was grown..Then, the elemental concentrations in the samples were determined by measuring the prompt gamma-ray from 11B(d,pγ1-0)12B, 14N(d,pγ4-1)13N and 12C(d,pγ1-0)13C reactions.

کلیدواژه‌ها [English]

  • Deuteron induced gamma-ray emission technique (DIGE)
  • Particle induced gamma-ray emission technique (PIGE)
  • graphene carbon nitride (g-C3N4)
  • BCN
  • quantitative analysis
1. A. Jokar, O. Kakuee, M. Lamehi-Rachti. Measurement of deuteron induced gamma-ray emission differential cross sections on natCl from 1.0 to 2.0 MeV. Nucl. Instrum. Methods Phys. Res. Sec. B: Beam Interactions with Materials Atoms 377 (2016) 37-42.
2. V. Manteigas, J. Cruz, M. Fonseca, A. Jesus. ERYA–Profiling: A code for quantitative PIGE analysis of in-depth heterogeneous samples. Nucl. Instrum. Methods Phys. Res. Sec. B: Beam Interactions with Materials Atoms 502 (2021) 142-149.
3. A. Lagoyannis, K. Preketes-Sigalas, M. Axiotis, V. Foteinou, S. Harissopulos, M. Kokkoris, P. Misaelides, V. Paneta, N. Patronis. Study of the
10B (p,αγ) 7Be and 10B (p,p′γ) 10B reactions for PIGE purposes. Nucl. Instrum. Methods Phys. Res. Sec. B: Beam Interactions with Materials Atoms 342 (2015) 271-276.
4. R. Mateus, A. Jesus, J. Ribeiro. A code for quantitative analysis of light elements in thick samples by PIGE. Nucl. Instrum. Methods Phys. Res. Sec. B: Beam Interactions with Materials Atoms 229 (2) (2005) 302-308.
5. Y. Sunitha, S. Kumar. 10B/11B isotopic ratio and atomic composition of boron carbide: determination by proton induced γ-ray emission and proton elastic backscattering spectrometry. J. Appl. Radiat. Isoto. 128 (2017) 28-35.
6. A. Jokar, O. Kakuee, V. Fathollahi, M. Lamehi-Rachti, N. Sharifzadeh. Measurement of deuteron induced gamma-ray emission cross sections on nitrogen for analytical applications. Nucl. Instrum. Methods Phys. Res. Sec. B: Beam Interactions with Materials Atoms 431 (2018) 25-30.
7. Á. Kiss, I. Biron, T. Calligaro, J. Salomon. Thick target yields of deuteron induced gamma-ray emission from light elements. Nucl. Instrum. Methods Phys.
Res. Sec. B: Beam Interactions with Materials Atoms 85(1-4) (1994) 118-122.
8. Z. Elekes, A. Kiss, I. Biron, T. Calligaro, J. Salomon, Thick target γ-ray yields for light elements measured in the deuteron energy interval of 0.7–3.4 MeV. Nucl. Instrum. Methods Phys. Res. Sec. B: Beam Interactions with Materials Atoms 168 (3)(2000) 305-320.
9. K. Gopalakrishnan, K. Moses, A. Govindaraj, C. Rao. Supercapacitors based on nitrogen-doped reduced graphene oxide and borocarbonitrides. Solid state commun. 175 (2013) 43-50.
10. V. S. Sulyaeva, Y. M. Rumyantsev, V. G. Kesler, M. L. Kosinova. Synthesis and optical properties of BC
xNy films deposited from N-triethylborazine and hydrogen mixture. Thin Solid Films 581 (2015) 59-64.
11. J. Caicedo, H. Caicedo, W. Aperador. TiN [BCN/BN] n/c-BN system improves the surface properties of machining tools used in industrial applications. Int. J. Adv. Manufacturing Tech. 77 (5) (2015) 819-830.
12. Y. Wang, Y. Li, J. Zhao, J. Wang, Z. Li. g-C3N4/B doped g-C3N4 quantum dots heterojunction photocatalysts for hydrogen evolution under visible light. Int. J. Hydrogen Energy 44 (2) (2019) 618-628.
13. S. Wang, G. Wang, T. Wu, Y. Zhang, F. Zhan, Y. Wang, J. Wang, Y. Fu, J. Qiu.BCN nanosheets templated by gC3 N4 for high performance capacitive deionization. J. Materials Chem. A 6 (30) (2018) 14644-14650.
14. W. Lei, S. Qin, D. Liu, D. Portehault, Z. Liu, Y. Chen. Large scale boron carbon nitride nanosheets with enhanced lithium
storage capabilities. Chem. Commun. 49 (4) (2013) 352-354.
15. V. Linss, I. Hermann, N. Schwarzer, U. Kreissig, F. Richter. Mechanical properties of thin films in the ternary triangle B–C–N. Surface Coatings Tech. 163 (2003) 220-226.
16. Z. Lin, X. Wang. Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. Angewandte Chemie 125 (6) (2013) 1779-1782.
17. P. Chen, P. Xing, Z. Chen, H. Lin, Y. He. Rapid and energy-efficient preparation of boron doped g-C3N4 with excellent performance in photocatalytic H2-evolution. Int. J. Hydrogen Energy 43 (43) (2018) 19984-19989.
18. P. -C. Tsai, The deposition and characterization of BCN films by cathodic arc plasma evaporation. Surface Coatings Tech. 201 (9-11) (2007) 5108-5113.
19. R. Groarke, R. K. Vijayaraghavan, D. Powell, A. Rennie, D. Brabazon. Powder characterization—methods, standards, and
state of the art. Fundamentals of Laser Powder Bed Fusion of Metals (2021) 491-527.
20. T. Kolber, K. Piplits, S. Dreer, E. Mersdorf, R. Haubner, H. Hutter. SIMS: a capable method for BCN quantification. Appl. Surface Sci. 167 (1-2) (2000) 79-88.
21. J. Debrun. The role of charged particle activation for materials analysis. IEEE Trans. Nucl. Sci. 26 (2) (1979) 2229-2235.
22. M. Mayer. SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA. AIP Conf. Proc. AIP, 1999, pp. 541-544.
23. Y. Wang, M. A. Nastasi, Handbook of modern ion beam materials analysis. Materials Research Society Warrendale, Pennsylvania, 2009.
24. Y. Hong, C. Li, G. Zhang, Y. Meng, B. Yin, Y. Zhao, W. Shi. Efficient and stable Nb2O5 modified g-C3N4 photocatalyst
for removal of antibiotic pollutant. Chem. Eng. J. 299 (2016) 74-84.
25. T. S. Bui, P. Bansal, B. -K. Lee, T. Mahvelati-Shamsabadi, T. Soltani. Facile fabrication of novel Ba-doped g-C3N4 photocatalyst with remarkably enhanced photocatalytic activity towards tetracycline elimination under visible-light irradiation. Appl. Surface Sci. 506 (2020) 144184.
26. A. Shawky, S. M. Albukhari, M. Amin, Z.
Zaki. Materials, Mesoporous V2O5/gC3N4 nanocomposites for promoted mercury (II) ions reduction under visible light. J. Inorg. Org. Poly. 31 (11) (2021) 4209-4221.
27. N. Sagara, S. Kamimura, T. Tsubota, T. Ohno. Photoelectrochemical CO2 reduction by a p-type boron-doped gC3N4 electrode under visible light. Appl. Catalysis B: Environmental 192 (2016) 193-198.
28. E. B. Azimi, A. Badiei, M. Jafari, A. B. Dehkordi, J. B. Ghasemi, G. M. Ziarani. Boron-doped graphitic carbon nitride as a
novel fluorescent probe for mercury (ii) and iron (iii): A circuit logic gate mimic. New J. Chem. 43 (30) (2019) 12087-12093.
29. N. A. Mohamed, J. Safaei, A. F. Ismail,M. F. M. Noh, N. A. Arzaee, N. N. Mansor, M. A. Ibrahim, N. A. Ludin, J. S. Sagu, M. A. M. J. J. O. A. Teridi. Fabrication of exfoliated graphitic carbon nitride,(g-C3N4) thin film by methanolic dispersion. J. Alloys Compounds 818 (2020) 152916.
30. B. Yan, G. Yang. Enhancing electron density of bulk g-C3N4 through phosphorus doping for promoting photocatalytic hydrogen evolution reaction. Appl. Surface Sci. 570 (2021) 151186.
31. D. H. Kim, E. Byon, S. Lee, J. -K. Kim, H. Ruh. Characterization of ternary boron carbon nitride films synthesized by RF magnetron sputtering. Thin Solid Films 447 (2004) 192-196.
32. G. Liu, G. Zhao, W. Zhou, Y. Liu, H. Pang, H. Zhang, D. Hao, X. Meng, P. Li, T. Kako. In situ bond modulation of graphitic carbon nitride to construct p–n homojunctions for enhanced photocatalytic hydrogen production, Adv. Funct. Mat. 26 (37) (2016) 6822-6829.
33. B. Zhu, P. Xia, W. Ho, J. Yu. Isoelectric point and adsorption activity of porous gC3N4. Appl. Surface Sci. 344 (2015) 188-
195.
34. N. Lei, J. Li, Q. Song, Z. Liang, Construction of g-C3N4/BCN twodimensional heterojunction photoanode for enhanced photoelectrochemical water splitting. Int. J. Hydrogen Energy 44 (21) (2019) 10498-10507.
35. J. Li, N. Lei, H. Hao, J. Zhou. A series of BCN nanosheets with enhanced photoelectrochemical performances. Chem. Phys. Letters 672 (2017) 99-104.