[1] J. Brooks, L. El-Guebaly, A. Hassanein and T.J. Sizyuk. Plasma-facing material alternatives to tungsten, Nuclear Fusion, 55(2015) 043002 (7pp).
[2] M.M. Seyedhabashi, B. shirani bidabadi, M. Amirhamzeh Tafreshi, F. Seddighi and A. Nasiri. Damage studies on irradiated tungsten by helium and argon ions in a plasma focus device, IJRSM, 8(2020) 1-12.
[3] S. Javadi, B. Ouyang, Z. Zhang, M. Ghoranneviss, A.S. Elahi and R.S. Rawat. Effects of fusion relevant transient energetic radiation, plasma and thermal load on PLANSEE double forged tungsten samples in a low-energy plasma focus device, Applied Surface Science, 443 (2018) 311-320.
[4] D. Nishijima, M. Ye, N. Ohno and S. Takamura. Formation of Nanostructured Tungsten with Arborescent Shape due to Helium Plasma Irradiation, Journal of Nuclear Materials, 97 (2003) 313-316.
[5] V. Barabash, The ITER International Team, A. Peacock, S. Fabritsiev, G. Kalinin, S. Zinkle, A. Rowcliffe, J.W. Rensman, A.A. Tavassoli, P.Marmy, P.J. Karditsas, F. Gillemot and M.Akiba. Materials challengges for ITER-Current status and future activities, Journal of Nuclear Materials, 367 (2007) 21-32.
[6] X. Yang and A. Hassanein. Molecular dynamics simulation of deuterium trapping and bubble formation in tungesten, Journal of Nuclear Materials, 434 (2013) 1-6.
[7] Q. Xu, T. Yoshiie and H. Huang. Nuclear Instruments and Methods in physics Research Section B: Beam Interactions with Materials and Atoms, Molecular dynamics simulation of vacancy diffusion in tungsten induced by irradiation, 206 (2003) 123-126.
[8] N.-Y. Park, Y.C. Kim, H.K. Seok, S.H. Han and S. Cho. Nuclear Instruments and Methods in physics Research Section B: Beam Interactions with Materials and Atoms, Molecular dynamics simulation of irradiation damage in tungsten, 265 (2007) 547-552.
[9] G. Janeschitz and I. Jct. Plasma-Wall interaction issuse in ITER Journal of Nuclear Materials, 290 (2001) 1-11.
[10] M.M. Seyedhabashi, M. A. Tafreshi, S. Shafiei and A. Abdisaray. Damage study irradiation tungsten and copper using poroton and argon ions of a plasma focus device, Applied radiation and Isotopes, 154 (2019) 108875.
[11] F. Sedighi, A. Kouhi, D. Iraji and C. Rasouli. Damage study of comparision the effects of high-energy pulsed-protons of plasma focus device with low-energy protons of glow discharge plasma of tokamak, Plasma Research Express, 2 (2020) 035001.
[12] M. Seyedhabashi, S. Shafiei, M. Tafreshi and B.S. Bidabadi. Study of surface damage and hydrogen distribution in irradiated tungsten by protons in plasma focus device, Vacuum, 175 (2020) 109249.
[13] V. Gribkov, V.A. Gribkov, V.N. Pimenov, L.I. Ivanov, E.V. Dyomina, S.A. Maslyaev, R. Miklaszewski, M. Scholz, U.E. Ugaste, A.V. Dubrovsky and V.C. Kulikauskas. Interaction of high temperature deuterium plasma streams and fast ion beams with stainless steels in dense plasma focus device, Journal of Physics D:Applied Physics, 36 (2003) 1817.
[14] M.J. Inestrosa-Izurieta, E. Ramos-Moore and L. Soto. Morphological and structural effects on tungsten targets produced by fusion plasma pulses from a table top plasma focus , Nuclear Fusion, 55 (2015) 093011.
[15] V. Gribkov, V.A. Gribkov, V.N. Pimenov, L.I. Ivanov, E.V. Dyomina, S.A. Maslyaev, R. Miklaszewski, M. Scholz, U.E. Ugaste, A.V. Dubrovsky and V.C. Kulikauskas. Interaction of high temperature deuterium plasma streams and fast ion beams with stainless steels in dense plasma focus device, Journal of Physics D:Applied Physics, 36 (2003) 1817.
[16] S.H. Saw, V. Damideh, J. Ali, R. S. Rawat and S. Lee. Damage Study of Irradiated Tungsten using fast focus mode of a 2.2 kJ plasma focus, Vacuum, 144 (2017) 14-20.
[17] R. Niranjan, R.K. Rout, R. Srivastava, Y. Chakravarthy, P. Mishra, T.C. Kaushik and Satish C.Gupta. Surface modifications of fusion reactor relevant materials on exposure to fusion grade plasma in plasma focus device, Applied surface science, 355 (2015) 989-998.
[18] S.M. Miremad and B.S. Bidabadi. Investigation the effect of anode’s insert material on spatial distribution of X-ray source in plasma focus device, Journal of Fusion Energy. 33 (2014) 319-335.
[19] M.M. Seyyedhabashy, M.A. Tafreshi, S. Shafiei and A. Nasiri. Damage studies on irradiated tungsten by helium ions in a plasma focus device, Nuclear Engineering and Technology, 52 (2020) 827-834.
[20] S. Saw, V. Damideh, O.H. Chin, J. Ali, P.C.K. Lee, R.S. Rawat and S. Lee. Comparative numerical study of the dynamics, ion beam and flow energetics of fast and slow focus modes in a 2 kJ plasma focus operated in various gases, Vacuum, 165 (2019) 337-342.
[21] Q. Gong , T. Gao, T. Hu and G. Zhou. Synthesis and Electrochemical Energy Storage Applications of Micro/Nanostructured Spherical Materials, Nanomaterials, 9 (2019) 1207.
[22] R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath and F.A. Garner. On the use of SRIM for computing radiation damage exposure, Nuclear instruments and methods in physics research section B: beam interactions with materials and atoms, 310 (2013) 75-80.
[23] E.A. Uehling. Penetration of Heavy Charged Particles in Matter, Annual review of nuclear science, 4 (1954) 315-350.