پاسخ مدل‌های هادرونی Geant4 در بررسی نوترون‌های تولیدی در تابش پروتون به مواد سبک

نویسندگان

گروه فیزیک، دانشگاه آزاد اسلامی واحد شیراز، شیراز، فارس

چکیده

یکی از محصولات برهم‌کنش پروتون‌های پرانرژی با مواد سبک، نوترون است. با استفاده از کدهای محاسباتی مونت‌کارلو، می‌توان از طریق شبیه‌سازی سیستم، طیف نوترون‌های حاصل، دز و شار نوترون را محاسبه و پیش‌گویی کرد. اما استفاده از مدل‌های هادرونی مختلف در بررسی این فرآیند، می‌تواند بر نتایج این محاسبات تأثیرگذار باشد. در این پژوهش، پاسخ چهار مدل هادرونی موجود در ابزار مونت‌کارلوی Geant4، در برهم‌کنش پروتون با مواد سبک، به لحاظ ویژگی نوترون‌های تولیدی، با یکدیگر مقایسه شده است. این مدل‌ها، تحت عنوان مدل آبشاری دوتایی، مدل پیش‌ترکیبی، مدل آبشاری درون-هسته‌ای برتینی و مدل درون-هسته‌ای لیگه نامیده می‌شوند. این مقایسه، در محدوده انرژی بالینی در پروتون‌تراپی صورت گرفته است. هم‌چنین نتایج این شبیه‌سازی، با داده‌های تجربی مقایسه شده و تطبیق یا عدم سازگاری این مدل‌ها با نتایج تجربی، بررسی و تفسیر شده است. نتایج نشان می‌دهد که هیچ ‌یک از مدل‌های تحت بررسی، نتایج تجربی را به‌طور کامل بازتولید نمی‌کنند، اما در محدوده خاصی از انرژی، مدل برتینی بهترین تطابق را با نتایج تجربی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

The response of Geant4 hadronic models to the study of neutrons produced in proton irradiation to the light materials

نویسندگان [English]

  • Hamideh Khasteh
  • Ladan Rezaee
چکیده [English]

Neutron is one of the products of the interaction of high energy protons with light nuclei. Using computational Monte Carlo codes, it is possible to calculate and predict the neutron spectrum, neutron flux, and doses by simulating the system. But the use of different hadronic models in this process can influence the results of these calculations. In this research, the response of the four hadronic models in the Geant4 Monte Carlo tool is compared with each other in the interaction of proton with light nuclei in terms of the characteristics of the produced neutrons. These models are referred to as the binary cascade model, the Precompound model, the Bertini intranuclear cascade model, and the Liege Intranuclear Cascade model. This comparison has been done in the area of clinical energy in proton therapy. Also, the results of this simulation are compared with experimental data and the adaptation or incompatibility of these models with empirical results has been reviewed and interpreted. The results show that none of the studied models fully reproduces empirical results, but in a certain range of energy, the Bertini model has the best fit with experimental results.
 

کلیدواژه‌ها [English]

  • Neutron spectrum
  • GEANT4
  • Hadronic models
  • Simulation
[1] D. Schardt, I. Schall, H. Geissel, H. Irnich, G. Kraft, A. Magel, M.F. Mohar, G. Munzenberg, F. Nickel, C. Scheidenberger, W. Schwab and L. Sihver. Nuclear fragmentation of high-energy heavy-ion beams in water, Advanced Space Research, 17 (1996) 87‒94. [2] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asri, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma and D. Zschiesche. GEANT4: a simulation toolkit. Nuclear Instruments and Methods in Physics Research, 506 (2003) 250‒303. [3] J.W. Shin, S.W. Hong, C.I. Lee and T.S. Suh. Application of a GEANT4 simulation to a 60Co therapy unit, Journal of Korean Physical Society, 59 (2011) 12‒19. [4] S. Hurtado, M. García-León and R. García-Tenorio. GEANT4 code for simulation of a germanium gamma-ray detector and its application to efficiency calibration, Nuclear Instruments and Methods in Physics Research A, 518 (2004) 764‒774. [5] J.W. Shin, T.S. Park, S.W. Hong, J.K. Park, J.T. Kim and J.S. Chai. Estimates of SEU for semiconductors using MC50 cyclotron and GEANT4 simulation, Journal of Korean Physical Society, 59 (2011) 2022‒2025. [6] J.W. Shin, S.W. Hong, S.I. Bak, D.Y. Kim and C.Y. Kim. GEANT4 and PHITS simulations of the shielding of neutrons from the 252Cf source, Journal of Korean Physical Society, 65 (2014) 591‒598. [7] J.W. Shin and T.S. Park. New charge exchange model of GEANT4 for 9Be(p,n)9B reaction, Nuclear Instruments and Methods in Physics Research B, 342 (2015) 194‒199. [8] Y. Malyshkin, I. Pshenichnov, I. Mishustin, T. Hughes, O. Heid and W. Greiner. Neutron production and energy deposition in fissile spallation targets studied with GEANT4 toolkit, Nuclear Instruments and Methods in Physics Research B, 289 (2012) 79‒90. [9] S. Avery, C. Ainsley, R. Maughan and J. McDonough. Analytical shielding calculations for a proton therapy facility, Radiation Protection Dosimetry, 131 (2008) 167‒179. [10] S.I. Bak, T.S. Park, S.W. Hong, J.W. Shin and I.S. Hahn. GEANT4 simulation of the shielding of neutrons from 252Cf source, Journal of Korean Physical Society, 59 (2011) 2071‒2074. [11] K. Banerjee, T.K. Ghosh, S. Kundu, T.K. Rana, C. Bhattacharya, J.K. Meena, G. Mukherjee, P. Mail, D. Gupta, S. Mukhopadhyay, D. Pandit, S.R. Banerjee, S. Bhattacharya, T. Bandyopadhyay and S. Chatterjee. Variation of neutron detection characteristics with dimension of BC501A neutron detector, Nuclear Instruments and Methods in Physics Research A, 608 (2009) 440‒446. [12] T.T. B¨ohlen, F. Cerutti, M. Dosanjh, A. Ferrari, I. Gudowska, A. Mairani, and J.M. Quesada. Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy, Physics in Medicine and Biology 22 (2010) 5833‒5847. [13] B. Braunn, A. Boudard, J. Colin, J. Cugnon, D. Cussol, J.C. David, P. Kaitaniemi, M. Labalme, S. Leray, and D.Mancusi. Comparisons of hadrontherapy-relevant data to nuclear interaction codes in the Geant4 toolkit, Journal of Physics (Paris): Conference Series, 420 (2013) 012163‒012172. [14] J. Dudouet, D. Cussol, D. Durand, and M. Labalme. Benchmarking GEANT4 nuclear models for hadron therapy with 95 MeV/nucleon carbon ions, Physical Review C, 89 (2014) 054616‒054619. [15] G. Folger, V.N. Ivanchenko and J.P. Wellisch. The binary cascade, European Physical Journal A, 21 (2004) 407‒417. [16] K.K. Gudima, S.G. Mashnik and V.D. Toneev. Cascade-exciton model of nuclear reactions, Nuclear Physics A, 401 (1983) 329‒361. [17] A. Heikkinen, N. Stepanov and J.P. Wellisch. Bertini intra-nuclear cascade implementation in GEANT4, Computing in High Energy and Nuclear Physics. 2003 Conference Proceedings (2003), arXiv:nucl-th/0306008. [18] A. Boudard, J. Cugnon, J.C. David, S. Leray and D. Mancusi. New Potentialities of the Liège Intranuclear Cascade (INCL) Model for Reactions Induced by Nucleons and Light Charged Particles, Physical Review C, 87 (2012) 014606‒014634. [19] J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asari, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand, B.R. Beck, A.G. Bogdanov, D. Brandt, J.M.C. Brown, H. Burkhardt, P. Canal, D. Canoott, S. Chauvie and H. Yoshida. Recent developments in Geant4, Nuclear Instrument and Method in Physics Research Section A, 835(1) (2016) 186‒225. [20] G. Cirrone, G. Cuttone and E. Mazzaglia. Hadrontherapy: a Geant4-Based Tool for Proton/Ion-Therapy Studies, Progress in Nuclear Science and Technology, 2 (2011) 207‒212. [21] J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asari, G. Barrand, R. Capra, S. Chauvie and R. Chytracek. Geant4 development and applications, IEEE Transactions on Nuclear Science, 53(1) (2006) 270‒278. [22] R. Serber. Nuclear reactions at high energies, Physical Review, 72 (1947) 1114‒1116. [23] D. Mancusi, A. Boudard, J. Cugnon, J.C. David, P. Kaitaniemi and S. Leray. Extension of the Liège intranuclear-cascade model to reactions induced by light nuclei, Physical Review C, 90 (2014) 054602‒054632. [24] I. Tilquin, P. Froment, M. Cogneau, T. Belbar, J. Vervier and G. Ryckewaert. Experimental measurements of neutron fluxes produced by proton beams (23–80 MeV) on Be and Pb targets, Nuclear Instruments and Methods in Physics Research A, 545 (2005) 339‒343. [25] U. Amaldi, and G. Kraft. Radiotherapy with beams of carbon ions, Reports on Progress in Physics, 68 (2005) 1861‒1882. [26] A.V. Ivanchenko, V.N. Ivanchenko, J.M. Quesada, and S. Incerti. Geant4 hadronic physics for space radiation environment, International Journal of Radiation and Biology, 88 (2012) 171‒175.