[1] B. Farhood, M.T. BahreyniToossi, N. Ghatei, N. Mohamadian, A. Mozaffari andC. Knaup. A comparison between skin dose of breast cancer patients at the breast region, measured by thermoluminescent dosimeter in the presence and absence of bolus. J. Cancer Res.Ther. 14(6) (2018) 1214–1219.
[2] A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward and D. Forman. Global cancer statistics. CA Cancer J. Clin. 61(2) (2011) 69–90.
[3] C. Ma, W. Zhang, J. Lu, L. Wu, F. Wu, B. Huang, Y. Lin and D. Li. Dosimetric comparison and evaluation of three radiotherapy techniques for use after modified radical mastectomy for locally advanced left-sided breast cancer. Sci. Rep. 5 (2015) 12274.
[4] Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10 801 women in 17 randomised trials. Lancet.378(11) (2011) 1707–1716.
[5] R.J. Santiago, L. Wu, E. Harris, K. Fox, D. Schultz, J. Glick and L.J.Solin. Fifteen-year results of breast-conserving surgery and definitive irradiation for Stage I and II breast carcinoma: the University of Pennsylvania experience. J.Radiat. Oncol. Biol. Phys. 58(1) (2004) 233–240.
[6] U. Veronesi, N. Cascinelli, L. Mariani, M. Greco, R. Saccozzi, A. Luini, M. Aguilar andE. Marubini. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N. Engl. J. Med. 347(16) (2002) 1227–1232.
[7] B. Fisher, S. Anderson, J. Bryant, R.G. Margolese, M. Deutsch, E.R. Fisher, J.H. Jeong and N. Wolmark. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N. Engl. J. Med. 347(16) (2002) 1233–1241.
[8] F.A. Vicini, M. Sharpe, L. Kestin, A. Martinez, C.K. Mitchell, M.F. Wallace, R. Matter and J. Wong. Optimizing breast cancer treatment efficacy with intensity-modulated radiotherapy. Int. J.Radiat. Oncol. Biol. Phys. 54(5) (2002) 1336–1344.
[9] F.A. Vicini, V. Remouchamps, M. Wallace, M. Sharpe, J. Fayad, L. Tyburski, N. Letts, L. Kestin, G. Edmundson, J. Pettinga, N.S. Goldstein and J. Wong. Ongoing clinical experience utilizing 3D conformal external beam radiotherapy to deliver partial-breast irradiation in patients with early-stage breast cancer treated with breast-conserving therapy. Int. J. Radiat. Oncol. Biol. Phys. 57(5) (2003) 1247–1253.
[10] R. Falcao, A. Facure and A. Silva. Neutron dose calculation at the maze entrance of medical linear accelerator rooms. Radiat. Prot. Dosimetry. 123(3) (2006) 283–287.
[11] H. Bagheri, R.S. Mahdavi, B. Shekarchi, F. Manouchehri and B. Farhood. Measurement of the contralateral breast photon and thermal neutron doses in breast cancer radiotherapy: a comparison between physical and dynamic wedges. Radiat. Prot. Dosimetry. 178(1) (2017) 73–81.
[12] J.Y. Huang, D.S. Followill, X.A. Wang and S.F. Kry. Accuracy and sources of error of out-of field dose calculations by a commercial treatment planning system for intensity-modulated radiation therapy treatments. J. Appl. Clin. Med. Phys. 14(2) (2013) 4139.
[13] C. La Tessa, T. Berger, R. Kaderka, D. Schardt, C. Körner, U. Ramm, J. Licher, N. Matsufuji, C. Vallhagen Dahlgren, T. Lomax, G. Reitz and M. Durante. Out-of-field dose studies with an anthropomorphic phantom: comparison of X-rays and particle therapy treatments. Radiother. Oncol. 105(1) (2012) 133–138.
[14] M. Tubiana. Can we reduce the incidence of second primary malignancies occurring after radiotherapy? A critical review. Radiother. Oncol. 91(1) (2009) 4–15.
[15] H. Bilge, N. Ozbek, M. Okutan, A. Cakir and H. Acar. Surface dose and build-up region measurements with wedge filters for 6 and 18 MV photon beams. Jpn. J.Radiol. 28(2) (2010) 110–116.
[16] W. Goggins, W. Gao and H. Tsao. Association between female breast cancer and cutaneous melanoma. Int. J. Cancer.111(5) (2004) 792–794.
[17] R.E. Shore. Radiation‐induced skin cancer in humans. Med. Pediatr. Oncol. 36(5) (2001) 549–554.
[18] S.M. Ghavami and H. Ghiasi. Estimation of Secondary Skin Cancer Risk Due To Electron Contamination in 18-MV LINAC-Based Prostate Radiotherapy. Iran. J. Med. Phys. 13(4) (2016) 236–249.
[19] R. Prabhakar, K. Haresh, P. Julka, T. Ganesh, G. Rath, R. Joshi, M. Sasindran, K.K. Naik and P.S. Sridhar. A study on contralateral breast surface dose for various tangential field techniques and the impact of set-up error on this dose. Australas. Phys. Eng. Sci. Med. 30(1) (2007) 42–45.
[20] A. Alzoubi, S. Kandaiya, A. Shukri and E. Elsherbieny. Contralateral breast dose from chest wall and breast irradiation: local experience. Australas. Phys. Eng. Sci. Med. 33(2) (2010) 137–144.
[21] W.B. Warlick, H. James, L. Earley, J.H. Moeller, D.K. Gaffney and D.D. Leavitt. Dose to the contralateral breast: a comparison of two techniques using the enhanced dynamic wedge versus a standard wedge. Med. Dosim. 22(3) (1997) 185–191.
[22] R. Kaderka, D. Schardt, M. Durante, T. Berger, U. Ramm, J. Licher and C.La Tessa. Out-of-field dose measurements in a water phantom using different radiotherapy modalities. Phys. Med. Biol. 57(16) (2012) 5059–5074.
[23] A. Triolo, M. Marrale and M. Brai. Neutron–gamma mixed field measurements by means of MCP–TLD600 dosimeter pair. Nucl.Instrum. Methods Phys. Res. B. 264(1) (2007) 183–188.
[24] F. Vanhavere, D. Huyskens and L. Struelens. Peripheral neutron and gamma doses in radiotherapy with an 18 MV linear accelerator. Radiat. Prot. Dosimetry. 110(1-4) (2004) 607–612.
[25] D.A. Schauer and O.W. Linton. NCRP report No. 160, ionizing radiation exposure of the population of the United States, medical exposure—are we doing less with more, and is there a role for health physicists? Health Phys. 97(1) (2009) 1–5.
[26] S.M. Ghavami, A. Mesbahi and E. Mohammadi. The impact of automatic wedge filter on photoneutron and photon spectra of an 18-MV photon beam. Radiat.Prot. dosimetry.138(2) (2009) 123–128.
[27] S.M. Hashemi, B. Hashemi-Malayeri, G. Raisali, P. Shokrani, A.A. Sharafi and F. Torkzadeh. Measurement of photoneutron dose produced by wedge filters of a high energy linac using polycarbonate films. J.Radiat. Res. 49(3) (2008) 279–283.
[28] A. Mesbahi, A. Keshtkar, E. Mohammadi and M. Mohammadzadeh. Effect of wedge filter and field size on photoneutron dose equivalent for an 18MV photon beam of a medical linear accelerator. Appl.Radiat. Isot. 68(1) (2010) 84–89.
[29] A. Naseri and A. Mesbahi. A review on photoneutrons characteristics in radiation therapy with high-energy photon beams. Rep.Pract.Oncol.Radiother. 15(5) (2010) 138–144.
[30] O. Tercilla, F. Krasin andL. Lawn-Tsao. Comparison of contralateral breast doses from 1/2 beam block and isocentric treatment techniques for patients treated with primary breast irradiation with 60 Co. Int. J.Radiat. Oncol. Biol. Phys. 17(1) (1989) 205–210.
[31] R. Muller-Runkel and U.P. Kalokhe. Scatter dose from tangential breast irradiation to the uninvolved breast. Radiology.175(3) (1990) 873–876.
[32] L. Hong, M. Hunt, C. Chui, S. Spirou, K. Forster, H. Lee, J. Yahalom, G.J. Kutcher and B.McCormick. Intensity-modulated tangential beam irradiation of the intact breast. Int. J.Radiat. Oncol. Biol. Phys. 44(5) (1999) 1155–1164.
[33] E.A. Krueger, B.A. Fraass and L.J. Pierce. Clinical aspects of intensity-modulated radiotherapy in the treatment of breast cancer. Semin.Radiat. Oncol. 12(3) (2002) 250–259.
[34] T.C. Woo, J.P. Pignol, E. Rakovitch, T. Vu, D. Hicks, P. O’Brien andK.Pritchard. Body radiation exposure in breast cancer radiotherapy: impact of breast IMRT and virtual wedge compensation techniques. Int. J.Radiat. Oncol. Biol. Phys. 65(1) (2006) 52–58.
[35] Y.O. Borghero, M. Salehpour, M.D. McNeese, M. Stovall, S.A. Smith, J. Johnson, G.H. Perkins, E.A. Strom, J.L. Oh, S.M. Kirsner, W.A. Woodward, T.K. Yu and T.A.Buchholz. Multileaf field-in-field forward-planned intensity-modulated dose compensation for whole-breast irradiation is associated with reduced contralateral breast dose: a phantom model comparison. Radiother. Oncol. 82(3) (2007) 324–328.
[36] E. Donovan, N. Bleakley, E. Denholm, P. Evans, L. Gothard, J. Hanson, C. Peckitt, S. Reise, G. Ross, G. Sharp, R. Symonds-Tayler, D. Tait, J. Yarnold and Breast Technology Group. Randomised trial of standard 2D radiotherapy (RT) versus intensity modulated radiotherapy (IMRT) in patients prescribed breast radiotherapy. Radiother. Oncol. 82(3) (2007) 254–264.
[37] J.P. Pignol, I. Olivotto, E. Rakovitch, S. Gardner, K. Sixel, W. Beckham, T.T. Vu, P. Truong, I. Ackerman and L.Paszat. A multicenter randomized trial of breast intensity-modulated radiation therapy to reduce acute radiation dermatitis. J.Clini. Oncol. 26(13) (2008) 2085–2092.
[38] T. Ohashi, A. Takeda, N. Shigematsu, J. Fukada, N. Sanuki, A. Amemiya andA.Kubo. Dose distribution analysis of axillary lymph nodes for three-dimensional conformal radiotherapy with a field-in-field technique for breast cancer. Int. J.Radiat. Oncol. Biol. Phys. 73(1) (2009) 80–87.
[39] M. Akram, K. Iqbal, M. Isa, M. Afzal and S.A. Buzdar. Optimum reckoning of contra lateral breast dose using physical wedge and enhanced dynamic wedge in radiotherapy treatment planning system. Int. J.Radiat. Res. 12 (2014) 295–302.