توسعه و ارزیابی روشی جدید مبتنی بر شبکه های عصبی انتشار به عقب برای افزایش دقت تشخیص سرطان ریه

نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده کاربرد پرتوها، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، تهران، ایران

چکیده

در این مقاله، با استفاده از شبکه‌های عصبی مصنوعی، روشی برای طبقه‌بندی تصاویر مقطع نگاری رایانه‌ای ریه با هدف تشخیص زودهنگام سرطان ارائه شده است. برای این منظور، با استفاده از تصاویر مقطع نگاری رایانه‌ای، کل ریه قطعه‌بندی شده و پارامترهای آماری همچون میانگین، انحراف معیار، چولگی، کشیدگی، گشتاور مرکزی مرتبه پنجم و گشتاور مرکزی مرتبه ششم از روی تصاویر قطعه‌بندی شده محاسبه می‌شوند. در فرایند طبقه‌بندی از شبکه‌های عصبی پیشخور انتشار به عقب استفاده شده است. نتایج نشان می‌دهد در میان توابع آموزشی موجود برای آموزش شبکه‌­های عصبی انتشار به عقب، بهترین دقت طبقه‌بندی با استفاده از تابع آموزشی Traingdx و با دقت % 91.1 حاصل شده است. همچنین، دو تابع آموزشی جدید نیز در این مقاله معرفی شده‌اند که یکی از آن‌ها با دقت % 93.3، تشخیص % 100، حساسیت % 91.4 و حداقل میانگین مربعات خطای 0.998 و دیگری با دقت % 93.3 و حداقل میانگین مربعات خطای 0.0942 به نتایج قابل قبولی دست یافته اند. به‌طور کلی، تشخیص زودهنگام سرطان با استفاده از شبکه‌های عصبی مصنوعی امیدوارکننده‌ترین راه برای افزایش شانس زنده‌ماندن بیماران است.

کلیدواژه‌ها


عنوان مقاله [English]

Development and Evaluation of a Novel Backpropagation Neural Networks Method for Improving Lung Cancer Diagnosis Accuracy

نویسندگان [English]

  • Mohsen Mehrabi
  • Amir Mohammad Beigzadeh
  • Hadi Ardini
Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
چکیده [English]

This paper presents a novel artificial neural network-based method for the classification of lung CT images to enable early diagnosis of lung cancer. For this purpose, the entire lung is segmented from the CT images, and statistical parameters such as mean, standard deviation, skewness, kurtosis, fifth-order central moment, and sixth-order central moment are computed from the segmented images. A feedforward backpropagation neural network is employed for the classification process. The results show that among the existing training functions for backpropagation neural networks, the best classification accuracy of 91.1% is achieved using the Traingdx training function. Additionally, two novel training functions are introduced in this paper, one of which achieved an accuracy of 93.3%, 100% detection rate, 91.4% sensitivity, and a mean squared error of 0.998, while the other achieved an accuracy of 93.3% and a mean squared error of 0.0942. Overall, the early diagnosis of lung cancer using artificial neural networks is a promising approach to increase the survival rate of patients.

  1. H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71 (3) (2021) 209-249.
  2. E. Augustus, K. Zwaenepoel, V. Siozopoulou, J. Raskin, S. Jordaens, G. Baggerman, L. Sorber, G. Roeyen, M. Peeters, P. Pauwels. Prognostic and predictive biomarkers in non-small cell lung cancer patients on immunotherapy—The role of liquid biopsy in unraveling the puzzle. Cancers 13 (7) (2021) 1675.
  3. M. P. Paing, K. Hamamoto, S. Tungjitkusolmun, C. Pintavirooj. Automatic detection and staging of lung tumors using locational features and double-staged classifications. Appl. Sci. 9(11) (2019) 2329.
  4. S. C. Lo, S. L. Lou, J. S. Lin, M. T. Freedman, M. V. Chien, S. K. Mun. Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans. Med. Imag.14 (4) (1995) 711-718.
  5. M. Uçar, E. Uçar. Computer-aided detection of lung nodules in chest X-rays using deep convolutional neural networks. Sakarya Uni. J. Comput. Inform. Sci. 2 (1) (2019) 1-8.
  6. A. A. Abdullah, S. M. Shaharum. Lung cancer cell classification method using artificial neural network. Inform. Eng. Lett.2 (1) (2012) 49-59.
  7. N. Camarlinghi, I. Gori, A. Retico, R. Bellotti, P. Bosco, P. Cerello, G. Gargano, E. Lopez Torres, R. Megna, M. Peccarisi, M. E. Fantacci. Combination of computer-aided detection algorithms for automatic lung nodule identification. Int. J. Comput. Assisted Radiology Surgery 7 (2012) 455-464.
  8. O. S. Al-Kadi, D. Watson. Texture analysis of aggressive and nonaggressive lung tumor CE CT images. IEEE Trans. Biomed. Eng.55 (7) (2008) 1822-1830.
  9. B. Van Ginneken, S. G. Armato III, B. de Hoop, S. van Amelsvoort-van de Vorst, T. Duindam, M. Niemeijer, K. Murphy, A. Schilham, A. Retico, M. E. Fantacci, N. Camarlinghi. Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the ANODE09 study. Med. Image Anal.14 (6) (2010) 707-722.
  10. R. Bellotti, F. De Carlo, G. Gargano, S. Tangaro, D. Cascio, E. Catanzariti, P. Cerello, S. C. Cheran, P. Delogu, I. De Mitri, C. Fulcheri. A CAD system for nodule detection in low‐dose lung CTs based on region growing and a new active contour model. Med. Phys.34 (12) (2007) 4901-4910.
  11. W. Wu, L. Gao, H. Duan, G. Huang, X. Ye, S. Nie. Segmentation of pulmonary nodules in CT images based on 3D‐UNET combined with three‐dimensional conditional random field optimization. Med. Phys. 47 (9) (2020) 4054-4063.
  12. R. C. Gonzalez, R. E. Wood, Digital Image Processing. 3ed ed., Pearson Prentice Hall, 2008.
  13. S. A. Patil, V. R. Udupi. Geometrical and texture features estimation of lung cancer and TB images using chest X-ray database. Int. J. Biomed. Eng. Tech. 6 (1) (2011) pp.58-75.
  14. R. Manickavasagam, S. Selvan, M. Selvan. CAD system for lung nodule detection using deep learning with CNN. Med. Biological Eng. Comput.60 (1) (2022) 221-228.
  15. F. Paulin, A. Santhakumaran. Back propagation neural network by comparing hidden neurons: case study on breast cancer diagnosis. Int. J. Comput. Appl.2 (4) (2010) 40-44.