اثر فروکشی دمایی در پارامتر‌های سینتیک منحنی تابش ترمولومینسانس دزیمتر CaF2:Mn (TLD-400)

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فیزیک، دانشگاه کاشان، کاشان، اصفهان، ایران

چکیده

با بررسی منحنی‌‌‌‌های تابش ترمولومینسانس به‌ازای مقادیر مختلف آهنگ‌‌‌گرمادهی، در صورتی‌که نقطه‌ی بیشینه‌ قله به سمت دما‌‌های بالا‌‌‌‌‌تر جابه‌جا شود و شدت بیشینه و سطح زیر منحنی کاهش ‌یابند، می­توان نتیجه گرفت که آن منحنی تحت اثر فروکشی دمایی قرار دارد. یکی از دزیمترهایی که تحت اثر فروکشی دمایی قرار دارد، CaF2:Mn (TLD-400) است. از طرفی منحنی تابش ترمولومینسانس این دزیمتر ترکیبی از 5 قله معرفی می‌شود که همگی از سینتیک مرتبه اول پیروی می­کنند. در این کار با معلوم بودن پارامترهای فروکشی دمایی این دزیمتر، پارامتر‌های سینتیک منحنی تابش ترمولومینسانس با و بدون در نظرگرفتن اثر فروکشی‌دمایی، طبق مدل سینتیک مرتبه اول تعیین شد. این کار از طریق برازش منحنی‌­های تابش ترمولومینسانس تجربی با رابطه­‌ی تئوری به‌ازای مقادیر مختلف آهنگ گرمادهی انجام شد. از آن‌جایی که رابطه­ ­شدت ترمولومینسانس با و بدون در نظرگرفتن اثر فروکشی دمایی متفاوت است، مشاهده شد که پارامترهای سینتیک حاصل از برازش منحنی­‌های تابش ترمولومینسانس تجربی با و بدون در نظر گرفتن اثر فروکشی دمایی یکسان نیستند.     

کلیدواژه‌ها


عنوان مقاله [English]

The effect of thermal quenching on the kinetic parameters of CaF2:Mn(TLD-400) dosimeter thermoluminescence glow curve

نویسندگان [English]

  • Somayeh Harooni
  • Raziyeh Fathi-Baghbahadorani
Faculty of Physics, University of Kashan, Kashan, Esfahan, Iran
چکیده [English]

The thermal quenching can be identified from diminishing of maximum temperature and peak intensity of thermoluminescence glow peaks by increase in heating rate. CaF2:Mn(TLD-400) is amongst the thermoluminescence phosphors that is affected by thermal quenching. thermoluminescence glow curve of this phosphor is contained 5 component glow peaks which obey first order kinetics. Using the given thermal quenching parameters of this phosphor, the kinetic parameters of all component glow peaks were evaluated with and without considering thermal quenching effect based on first order kinetics. This was carried out by fitting the experimental glow curve with theoretical models for different heating rates. Considering that the function describing the thermoluminescence intensity in presence of thermal quenching differs from that in absence of thermal quenching, fitting procedure results different kinetic parameters for two above cases.

کلیدواژه‌ها [English]

  • thermoluminescence
  • CaF2:Mn (TLD-400)
  • heating rate
  • first order model
  • thermal quenching
  • kinetic parameters
  1. M. Zahedifar, P. Rezaeian, S. Harooni. Thermoluminescence kinetic analysis of basaltic rocks using a generalized model for exponential distribution of activation energies. Nucl. Instr. and meth. B 264 (2007) 378-382.
  2. A. Kadari, D. Kadri. New numerical model for thermal quenching mechanism in quartz based on two-stage thermal stimulation of thermoluminescence model. Arab. J. Chem. 8 (6) (2015) 798-802.
  3. S. Harooni, M. Zahedifar, Z. Ahmadian. Determination of thermal quenching parameters of LiF:Mg,Ti (TLD-100) dosimeter. Iran. J. Radiat. Safety Meas. 5 (1) (2017) 29-34.
  4. S. Taheri-Hasanabad, S. Harooni, M. Zahedifar, N. Hajiloo. Determination of thermal quenching parameters in CaF2:Mn(TLD-400) thermoluminescent dosimeter. J. Nucl. Sci. Technol. 93 (3) (2020) 130-134.
  5. M. S. Akselrod, N. A. Larsen, V. Whitley, S. W. S. McKeever. Thermal quenching of F-center luminescence in Al2O3:C. Radiat. Prot. Dosim. 84 (1-4) (1999) 39-42.
  6. A. Halperin, A. A. Braner. Evaluation of thermal activation energies from glow curves. Phys. Rev. 117 (1960) 408-415.
  7. J. T. Randall, M. H. F. Wilkins. Phosphorescence and electron traps: I. the study of trap distribution. Proc. Roy. Soc. London A. 184 (1945) 366-389.
  8. G. F. J. Garlick, A. F. Gibson. The electron trap mechanism of luminescence in sulphide and silicate phosphors. Proc. Phys. Soc. 60 (1948) 574-589.
  9. G. Kitis, J. M. Gomez-Ros, J. W. N. Tuyn. Thermoluminescence glow curve deconvolution function for first, second and general orders of kinetics. J. Phys. D. Appl. Phys. 31(19) (1998) 2636-2641.
  10. S. W. S. McKeever. Thermoluminescence of Solids. Cambridge University Press, 1985.
  11. B. Subedi, E. Oniya, G. S. Polymeris, D. Afouxenidis, N. C. Tsirliganis, G. Kitis. Thermal quenching of thermoluminescence in quartz samples of various origin. Nucl. Instr. Meth. B 269 (6) (2011) 572-581.
  12. S. Harooni, M. Zahedifar, E. Sadeghi, Z. Ahmadian. A new thermoluminescence general order glow curve fit function considering thermal quenching effect. Radiat. Prot. Dosim. 187 (2) (2019) 103-107.
  13. V. E. Kafadar. Thermal quenching of thermoluminescence in TLD-200, TLD-300 and TLD-400 after β-irradiation. Physica B. 406 (3) (2011) 537-540.
  14. S. Harooni, S. Taheri-Hasanabad. New first order model of thermoluminescence as a function of peak temperature and intensity considering thermal quenching effect. J. Nucl. Sci. Technol. 44 (2) (2023) 40-46.
  15. A. N. Yazici, M. Bedir, A. S. Sokucu. The analysis of dosimetric thermoluminescence glow peak of CaF2:Mn after β-irradiation. Nucl. Instr. Meth. B 259 (2) (2007) 955-965.
  16. M. Topaksu, V. Correcher, J. Garcia-Guinea. Luminescence emission of natural fluorite and synthetic CaF2:Mn (TLD-400). Radiat. Phys. Chem. 119 (2016) 151-156.
  17. M. Danilkin, A. Lust, M. Kerikmäe, V. Seeman, H. Mändar, M. Must. CaF2: Mn extreme dosimeter: Effects of Mn concentration on thermoluminescence mechanisms and properties. Radiat. Meas. 41 (6) (2006) 677-681.
  18. H. G. Balian, N. W. Eddy. Figure of merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness of fit of gammaray spectra peaks. Nucl. Instr. Meth. 145 (2) (1977) 389-395.