بررسی و مقایسه دزیمتر ژل پلیمری MAGICA و PAGATA جهت مقاصد پزشکی هسته‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی پرتوپزشکی، دانشکده فنی مهندسی ، واحد لاهیجان ، دانشگاه آزاد اسلامی ، لاهیجان ، ایران

چکیده

محاسبه توزیع فضایی دز در طول پرتودرمانی می‌تواند به پزشک‌ها در درمان بهتر اندام سرطانی و کاهش دز اندام‌های حساس اطراف آن، کمک کند. دزیمترهای ژل پلیمری معادل بافت حاوی مواد شیمیایی حساس به پرتو هستند که تحت تابش به‌صورت تابعی از دز جذبی، پلیمریزه شده و اطلاعات فضایی توزیع دز با تصویربرداری از ژل تابش دیده، قابل‌استخراج است. در این مطالعه، با استفاده از کد مونت‌کارلو MCNPX و فانتوم ORNL، ابتدا دز دریافتی ریه‌ها، کبد، پستان، معده، طحال و کلیه‌ها در حین پرتودرمانی هدفمند بافت سرطانی ریه با استفاده از ید-131 شبیه‌سازی شد. سپس ژل دزیمترهای MAGICA و PAGATA در بافت‌های هدف قرار داده شده و دز دریافتی آن‌ها مجدداً بررسی شد. نتایج این شبیه‌سازی‌ها نشان می‌دهد که دز دریافتی بافت ریه‌ها، کبد، پستان، معده، طحال و کلیه‌ها با نتایج ژل دزیمترهای MAGICA و PAGATA قابل‌مقایسه هستند؛ بنابراین از این ژل دزیمترها می‌توان در دزیمتری درمان با ید-131 در فانتوم‌های فیزیکی، استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation and comparison of MAGICA and PAGATA polymer gel dosimeters for nuclear medicine purposes

نویسندگان [English]

  • Mohadeseh Falahatkar
  • Mahyar Nirouei
  • Alireza Azadbar
Department of Nuclear Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran
چکیده [English]

Calculation of the dose spatial distribution during radiation therapy can help doctors to better treat the cancerous organ and reduce the dose of sensitive organs around it. Tissue equivalent polymer gel dosimeters consist of radiation-sensitive chemicals that are polymerized under irradiation as a function of absorbed dose, and the spatial information of dose distribution can be extracted by imaging the irradiated gel. In this study, using MCNPX Monte Carlo code and ORNL phantom, the received dose of lungs, liver, breast, stomach, spleen, and kidneys were simulated during targeted radionuclide therapy of lung cancer tissue with iodine-131. Then MAGICA and PAGATA gel dosimeters were placed in the target tissues and their received dose were checked again. The results of these simulations show that the received tissue dose of lungs, liver, breast, stomach, spleen, and kidneys are comparable with the results of MAGICA and PAGATA gel dosimeters; therefore, these gel dosimeters can be used in dosimetry studies of treatment with iodine-131 in physical phantoms.

کلیدواژه‌ها [English]

  • nuclear medicine
  • PAGATA
  • MAGICA
  • Iodine-131
  • polymer gel dosimeter
  • MCNPX
  1. A. Sahebnasagh, K. Adinehvand, B. Azadbakht. Determination and comparison of absorbed dose of ovaries and uterus in heart scan from TC-99m, by three methods: TLD measurement, MCNP simulation and MIRD calculation and estimation of its risks. Res. J. Appl. Sci. Eng. Technol. 4 (22) (2012) 4572-4575.
  2. G. Gambarini, E. Artuso, D. Giove, M. Felisi, L. Volpe, L. Barcaglioni, S. Agosteo, L. Garlati, A. Pola, V. Klupak, L. Viererbl. Study of suitability of Fricke-gel-layer dosimeters for in-air measurements to characterise epithermal/thermal neutron beams for NCT. Appl. Radiat. Isot. 106 (2015) 145-150.
  3. F. M. Khan, J. P. Gibbons. Khan's the Physics of Radiation Therapy. Wolters Kluwer, New York, USA, 2019.
  4. M. Schwarcke, T. Marques, C. Garrido, P. Nicolucci, O. Baffa. MAGIC-f Gel in Nuclear Medicine Dosimetry: study in an external beam of Iodine-131. 6th Int. Conf. 3DRDose, USA, 2010.
  5. W. A. Dezarn, J. T. Cessna, L. A. DeWerd, W. Feng, V. L. Gates, J. Halama, A. S. Kennedy, S. Nag, M. Sarfaraz, V. Sehgal, R. Selwyn. Recommendations of the American association of physicists in medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies. Med. Phys. 38 (8) (2011) 4824-4845.
  6. G. Shani. Radiation Dosimetry Instrumentation and Methods. CRC Press, Boca Raton, Florida, USA, 2000.
  7. S. K. D. Kalaiselven, J. J. S. E. Rajan. Polymer Gel Dosimetry for Radiation Therapy, in: G. Natanasabapathi (Eds), Modern Practices in Radiation Therapy. INTECH, UK (2012) pp. 309-326.
  8. A. Venning, B. Healy, K. Nitschke, C. Baldock. Investigation of the MAGAS normoxic polymer gel dosimeter with Pyrex glass walls for clinical radiotherapy dosimetry. Nucl. Instrum. Methods Phys. Res., Sect. A. 555 (1) (2005) 396-402.
  9. G. S. Ibbott. Applications of gel dosimetry. 3th Int. Conf. RGDose, Belgium, 2004.
  10. P. Alexander, A. Charlesby, M. Ross. The degradation of solid polymethylmethacrylate by ionizing radiation. Proc. R. Soc. Lond. Ser.A-Math. Phys. Sci. 223 (1154) (1954) 392-404.
  11. F. E. Hoecker, I. W. Watkins. Radiation polymerization dosimetry. Appl. Radiat. Isot. 3 (1) (1958) 31-35.
  12. A. L. Boni. A polyacrylamide gamma dosimeter. Radiat. Res. 14 (4) (1961) 374-380.
  13. C. Audet, L. J. Schreiner. Radiation dosimetry by NMR relaxation time measurements of irradiated polymer solutions. Proc. Intl. Soc. Mag. Reson. Med., USA, 1991.
  14. R. P. Kennan, M. J. Maryanski, J. Zhong, J. C. Gore. Hydrodynamic effects and cross relaxation in cross linked polymer gels. Proc. Intl. Soc. Mag. Reson. Med., USA, 1992.
  15. M. J. Maryanski, J. C. Gore, R. J. Schulz. 3-D radiation dosimetry by MRI: solvent proton relaxation enhancement by radiation-controlled polymerisation and cross-linking in gels. Proc. Intl. Soc. Mag. Reson. Med., USA, 1992.
  16. M. J. Maryanski, J. C. Gore, R. P. Kennan, R. J. Schulz. NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by MRI. Magn. Reson. Imaging. 11 (1993) 253-258.
  17. M. J. Maryanski, R. J. Schulz, G. S. Ibbott, J. C. Gatenby, J. Xie, D. Horton, J. C. Gore. Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter. Phys. Med. Biol. 39 (1994) 1437-1455.
  18. M. J. Maryanski, J. C. Gore, R. Schulz. Three-dimensional detection, dosimetry and imaging of an energy field by formation of a polymer in a gel. US Patent. 5,321,357 (1994).
  19. A. J. Venning, S. Brindha, B. Hill, C. Baldock. Preliminary study of a normoxic PAG gel dosimeter with tetrakis (hydroxymethyl) phosphonium chloride as an antioxidant. 3th Int. Conf. RGDose, Belgium, 2004.
  20. B. Azadbakht, K. Haddad, S. Bagheri. Fabrication and optimization of a PAGATA gel dosimeter: increasing the melting point of the PAGAT gel dosimeter with agarose additive. Iran. J. Med. Phys. 7 (4) (2010) 1-6.
  21. P. M. Fong, D. C. Keil, M. D. Does, J. C. Gore. Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere. Phys. Med. Biol. 46 (2001) 3105-3113.
  22. Y Deene, K. Vergote, C. Claeys, C. DeWagter. The fundamental radiation properties of normoxic polymer gel dosimeters: A comparison between a methacrylic acid based gel and acrylamide based gels. Phys. Med. Biol. 51 (2006) 635-673.
  23. C. Hurley, A. Venning, C. Baldock. A study of a normoxic polymer gel dosimeter comprising methacrylic acid, gelatin and tetrakis (hydroxymethyl) phosphonium chloride (MAGAT). Appl. Radiat. Isot. 63 (2005) 443-456.
  24. J. J. Luci, H. M. Whitney, J. C. Gore. Optimization of MAGIC gel formulation for three-dimensional radiation therapy dosimetry. Phys. Med. Biol. 25 (2007) 241-248.
  25. K. Adinehvand, M. H. Zahmatkesh, M. R. Aghamiri, S. h. Akhlaghpour, S. Bagheri. Verification of dose rate and energy dependence of MAGICA polymer gel dosimeter with electron beams. Iran. J. Radiat. Res. 6 (2008) 31-36.
  26. B. Farhood, G. Geraily, S. M. Abtahi. A systematic review of clinical applications of polymer gel dosimeters in radiotherapy. Appl. Radiat. Isot. 143 (2019) 47-59.
  27. K. Braun, D. Bailey, B. Hill, C. Baldock. Preliminary investigation of PAGAT polymer gel radionuclide dosimetry of Tc-99m. 5th Int. Conf. RGDose, Greece, 2008.
  28. K. Adinehvand, F. N. Rahatabad. Monte-Carlo based assessment of MAGIC, MAGICAUG, PAGATUG and PAGATAUG polymer gel dosimeters for ovaries and uterus organ dosimetry in brachytherapy, nuclear medicine and Tele-therapy. Comput. Meth. Prog. Biomed. 159 (2018) 37-50.
  29. F. F. Knapp, A. Dash. Radiopharmaceuticals for Therapy. Springer, New Delhi, India, 2016.
  30. B. P. Denise. MCNPX-User’s Manual Version 2.6.0: A Technical Document. Los Alamos National Laboratory. New Mexico, USA, 2009.
  31. K. F. Eckerman, M. Cristy, J. C. Ryman. The ORNL mathematical phantom series. Oak Ridge National Laboratory, Oak Ridge, USA, 1996. Available at: http://ornl.gov/vlab/mird2.pdf, 1996.