برآورد آسیب حاصل از تابش رادیونوکلوئیدهای گسیلنده الکترون اوژه بر اساس مدل ZBB1 در حضور نانو ذرات متفاوت: مطالعه شبیه‌سازی مونت‌کارلو

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده علوم پایه، دانشگاه گیلان، رشت، گیلان، ایران

چکیده

امروزه، پرتودرمانی یکی از کارآمدترین روش‌ها برای درمان سرطان به شمار می‌آید. تحقیقات نشان داده است که استفاده از نانوذرات با عدد اتمی بالا مانند طلا، نقره و گادولینیوم به‌عنوان حساس‌کننده پرتوی در پرتودرمانی بسیار مؤثر بوده و نهشت انرژی را در اندام هدف به واسطه عدد اتمی بالایشان افزایش می‌دهند. از سوی دیگر، استفاده از ذرات باردار کوتاه‌برد، مانند الکترون‌های اوژه با توجه به انرژی به نسبت کم آن‌ها، امکان تخریب سلول‌های بافت آسیب دیده با حداقل آسیب سلول‌های سالم مجاور را میسر خواهد نمود. در این مطالعه، اثرات انتشار الکترون‌های رادیونوکلئیدهای گسیلنده الکترون اوژه مانند 99mTc، 201Tl، 123125111In و 67Ga بر شکست تک رشته‌ای(SSB)، شکست دو رشته‌ای(DSB) از نوع مستقیم و غیرمستقیم و همچنین شکست دورشته‌ای ترکیبی(Hybrid DSB) در حضور و عدم حضور نانوذرات طلا، گادولینیوم و نقره با استفاده از ابزار Geant4-DNA برای مدل 1ZBB (که از کتابخانه بانک اطلاعات پروتئین انتخاب شده است) مورد بررسی قرار گرفته است. نتایج این مطالعه نشان می‌دهد؛ از میان گسیلنده‌های اوژه یاد شده، 125I و99mTc بیشترین و 123I کم‌ترین آسیب DNA را ایجاد می‌کنند. از سوی دیگر افزودن نانوذرات طلا، گادولینیوم و نقره می‌توانند منجر به افزایش به ترتیب 59%، 56% و 55% آسیب DNA شوند. نتایج این مطالعه نشان می‌دهد که 125I و 99mTc گزینه‌های موثرتری برای مهار یا کنترل سلول‌های سرطانی هستند. علاوه بر این افزودن نانوذرات طلا نیز می‌تواند منجر به بهبود اثربخشی درمان در اوژه تراپی گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Damage estimation resulting from Auger electron-emitting radionuclides based on the 1ZBB model in the presence of different nanoparticles: A Monte Carlo simulation study

نویسندگان [English]

  • Ali Azizi Ganjgah
  • Payvand Taherparvar
Faculty of Science, University of Guilan, Namjoo St, Rasht, Iran
چکیده [English]

Today, radiotherapy is considered one of the most effective methods for cancer treatment. Research has shown that using nanoparticles with high atomic numbers such as gold, silver and gadolinium as radiosensitizers in radiotherapy is very effective and increases energy deposition in the target organ due to their high atomic number. On the other hand, using short-range charged particles, such as auger electrons, given their relatively low energy, enables the destruction of damaged tissue cells with minimal damage to surrounding healthy cells. In this study, the effects of diffusion of auger electrons from radionuclides such as 99mTc, 201Tl, 123I, 125I, 111In, and 67Ga on single-strand breaks (SSBs), direct and indirect double-strand breaks (DSBs), and hybrid double-strand breaks (Hybrid DSBs) in the presence and absence of gold, gadolinium and silver nanoparticles were investigated using the Geant4-DNA toolkit for the 1ZBB model (selected from the Protein Data Bank library). The results show that among the mentioned auger emitters, 125I and 99mTc cause the most and 123I the least DNA damage. On the other hand, adding gold, gadolinium, and silver nanoparticles can increase DNA damage by 59%, 56%, and 55%, respectively. The results of this study show that 125I and 99mTc are more effective options for inhibiting or controlling cancer cells. In addition, adding gold nanoparticles can also lead to improved treatment efficacy.

کلیدواژه‌ها [English]

  • Geant4-DNA
  • Auger electron
  • Nanoparticles
  • Single-Strand Break
  • Double-Strand Break
  1. K. Ganesh, J. Massagué. Targeting metastatic cancer. Nat Med. 27 (2021) 34-44.
  2. C. A. Santiago, J. C. L. Chow. Variations in gold nanoparticle size on DNA damage: A Monte Carlo study based on a multiple-particle model using electron beams. Appl. Sci. 13 (8) (2023) 4916.
  3. P. Taherparvar, A. Azizi Ganjgah. Effect of marker material on the dosimetric parameters of I-125 source (model 6711): Monte Carlo simulation. RPE. 4 (2) (2022) 19-24.
  4. C. H. Yeong, M. H. Cheng, K. H. Ng. Therapeutic radionuclides in nuclear medicine: current and future prospects. J. Zhejiang Univ. Sci. B 15 (2014) 845-863.
  5. N. H. Huynh, J. C. L. Chow. DNA dosimetry with gold nanoparticle irradiated by proton beams: A Monte Carlo study on dose enhancement. Appl. Sci 11 (22) (2021) 10856.
  6. S. Asadian, H. Mirzaei, B. Aziz Kalantari, M. R. Davarpanah, M. Mohamadi, A. Shpichka, L. Nasehi, H. Aboulkheyr Es, P. Timashev, M. Najimi, N. Gheibi, M. Hassan, M. Vosough. β-radiating radionuclides in cancer treatment, novel insight into promising approach. Pharmacol. Res. Commun. 160 (2020) 105070.
  7. M. B. Idrissou, A. Pichard, B. Tee, T. Kibedi, S. Poty, J. -P. Pouget. Targeted radionuclide therapy using auger electron emitters: The quest for the right vector and the right radionuclide. pharmaceutics 13 (7) (2021) 980.
  8. M. Seifi Moradi, B. Shirani Bidabadi. Micro-dosimetry calculation of Auger-electron-emitting radionuclides mostly used in nuclear medicine using GEANT4-DNA. Appl. Radiat. Isot. 141 (2018) 72-79.
  9. A. Ku, V. J. Facca, Z. Cai, R. M. Reilly. Auger electrons for cancer therapy – a review. EJNMMI Radiopharm. Chem. 4 (1) (2019) 27.
  10. J. -P. Pouget, L. Santoro, L. Raymond, N. Chouin, M. Bardiès, C. Bascoul-Mollevi, H. Huguet, D. Azria, P. -O. Kotzki, M. Pèlegrin, E. Vivès, A. Pèlegrin. Cell membrane is a more sensitive target than cytoplasm to dense ionization produced by auger electrons. Radiat. Res. 170 (2) (2008) 192-200.
  11. R. Salim, P. Taherparvar. Monte Carlo single-cell dosimetry using Geant4-DNA: the effects of cell nucleus displacement and rotation on cellular S values. Radiat. Environ. Biophys. 58 (3) (2019) 353-371.
  12. R. Salim, P. Taherparvar. A Monte Carlo study on the effects of a static uniform magnetic field on micro-scale dosimetry of Auger-emitters using Geant4-DNA Radiat. Phys. Chem. 195 (2022) 110063.
  13. P. Ahmadi, M. Shamsaei Zafarghandi, A. Shokri. Calculation of direct and indirect damages of Auger electron-emitting radionuclides based on the atomic geometric model: A simulation study using Geant4-DNA toolkit. Nucl. Instrum. Methods Phys. Res B. 483 (2020) 22-28.
  14. N. Falzone, B. Q. Lee, J. M. Fernández-Varea, C. Kartsonaki, A. E. Stuchbery, T. Kibédi, K. A. Vallis. Absorbed dose evaluation of Auger electron-emitting radionuclides: impact of input decay spectra on dose point kernels and S-values. Phys. Med. Biol. 62 (6) (2017) 2239.
  15. S. M. Goddu, R. W. Howell, D. V. Rao. Cellular dosimetry: absorbed fractions for monoenergetic electron and alpha particle sources and S-values for radionuclides uniformly distributed in different cell compartments. J. Nucl. Med. 35 (2) (1994) 303-316.
  16. D. Beaumont, J. Y. Herry, M. Sapene, P. Bourguet, J. J. Larzul, B de Labarthe. Gallium-67 in the evaluation of sarcoidosis: correlations with serum angiotensin-converting enzyme and bronchoalveolar lavage. Thorax. 37 (1) (1982) 11-18.
  17. S. Seien, J. Aaseth. Thallium-201 as an agent for myocardial imaging studies. Analyst. 120 (3) (1995) 779- 781.
  18. A. C. Begg, F. A. Stewart, C. Vens. Strategies to improve radiotherapy with targeted drugs. Nat. Rev. Cancer. 11 (2011) 239-253.
  19. M. Baumann, M. Krause, J. Overgaard, J. Debus, S. M. Bentzen, J. Daartz, C. Richter, D. Zips, T. Bortfeld. Radiation oncology in the era of precision medicine. Nat. Rev. Cancer. 16 (4) (2016) 234-249.
  20. L. Gong, Y. Zhang, C. Liu, M. Zhang, S. Han. Applications of radiosensitizer in cancer radiotherapy. Int. J. Nanomed. 16 (2021) 1083-1102.
  21. J. F. Fowler, G. E. Adams, J. Denekamp. Radiosensitizers of hypoxic cells in solid tumors. Cancer Treat. Rev. 3 (4) (1976) 227-256.
  22. A. Rajaee, S. Wang, L. Zhao, D. Wang, Y. Liu, J. Wang, K. Ying. Multifunction bismuth gadolinium oxide nanoparticles as radiosensitizer in radiation therapy and imaging. Phys. Med. Biol. 64 (19) (2019) 195007.
  23. T. Fält, M. Söderberg, J. Wassélius, P. Leander. Material decomposition in dual-energy computed tomography separates high-Z elements from iodine, identifying potential contrast media tailored for dual contrast medium examinations. J. Comput. Assist. Tomogr. 39 (6) (2015) 975-980.
  24. Y. Liu, P. Zhang, F. Li, X. Jin, J. Li, W. Chen, Q. Li. Metal-based nano enhancers for future radiotherapy: radiosensitizing and synergistic effects on tumor cells. Theranostics. 8 (7) (2018) 1824-1849.
  25. S, Shrestha, L. N. Cooper, O. A. Andreev, Y. K. Reshetnyak, M. P. Antosh. Gold Nanoparticles for Radiation Enhancement in Vivo. Jacobs J. Radiat. Oncol. 3 (2016) 026.
  26. J. C. L. Chow. Characteristics of Secondary Electrons from Irradiated Gold Nanoparticle in Radiotherapy. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham, 2016.
  27. J. Li, J. Zhang, X. Wang, N. Kawazoe, G. Chen. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale 8 (2016) 7992-8007.
  28. E. Taha, F. Djouider, E. Banoqitah. Monte Carlo simulation of dose enhancement due to silver nanoparticles implantation in brain tumor brachytherapy using a digital phantom. Radiat. Phys. Chem. 156 (2019) 15-21.
  29. S. J. Hosseini AliAbadi, D. Sardari, E. Saeedzadeh, S. Baradaran. Investigation of the extent of DNA damage under proton irradiation in the presence of various nanoparticles of Au, Gd and I, using Geant4-DNA toolkit. Iranian J. Radiat. Safety Measurement 10 (2) (2020) 1-10.
  30. S. Siddique, J. C. L. Chow. Gold nanoparticles for drug delivery and cancer therapy. Appl. Sci. 10 (11) (2020) 3824.
  31. P. Ahmadi, M. Shamsaei Zafar Ghandi, A. Shokri. Calculation of damages of Auger electron-emitting from radionuclides based on 1ZBB model: a simulation study using the Geant4 toolkit. Iranian J. Radiat. Safety Measurement 9 (6) (2020) 1-10.
  32. M. A. Bernal, J. A. Liendo. An investigation on the capabilities of the PENELOPE MC code in nanodosimetry. Med. Phys. 36 (2) (2009) 620–625.
  33. U. Titt,  B. Bednarz, H. Paganetti. Comparison of MCNPX and Geant4 proton energy deposition predictions for clinical use. Phys. Med. Biol. 57 (2012) 6381–6393.
  34. R. Salim, P. Taherparvar. Dosimetry assessment of theranostic Auger-emitting radionuclides in a micron-sized multicellular cluster model: A Monte Carlo study using Geant4-DNA simulations. Appl. Radiat. Isot. 188 (2022) 110380.
  35. S. Incerti, A. Ivanchenko, M. Karamitros, A. Mantero, P. Moretto, H. N. Tran, B. Mascialino, C. Champion, V. N. Ivanchenko, M. A. Bernal, Z. Francis, C. Villagrasa, G. Baldacchin, P. Guèye, R. Capra, P. Nieminen, C. Zacharatou. Comparison of GEANT4 very low energy cross section models with experimental data in water. Med. phys. 37 (9) (2010) 4692-4708.
  36. S. Siddique, J. C. L Chow. Recent advances in functionalized nanoparticles in cancer theranostics. Nanomaterials (Basel) 12 (16) (2022) 2826
  37. E. Delage, Q.T. Pham, M. Karamitros, H. Payno, V. Stepan, S. Incerti, L. Maigne, Y. Perrot. PDB4DNA: Implementation of DNA geometry from the Protein Data Bank (PDB) description for Geant4-DNA Monte-Carlo simulations. Comput. Phys. Commun. 192 (2015) 282-288.
  38. S. A. Zein, M. -C. Bordage, H. N. Tran, G. Macetti, A. Genoni, C. D. Cappello, S. Incerti. Monte Carlo simulations of electron interactions with the DNA molecule: A complete set of physics models for Geant4-DNA simulation toolkit. Nucl. Instrum. Methods Phys. Res B 542 (2023) 51-60.