ارزیابی و مقایسه کدهای GEANT4-DNA و MCDS در برآورد اثرات زیست‌شناختی نسبی حاصل از الکترون‌های اوژه ساطع‌شده از رادیوایزوتوپ‌های ید

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشکده علوم‌پایه، دانشگاه حکیم سبزواری، سبزوار، ایران

چکیده

در مطالعه حاضر، مقادیر اثرات زیست‌شناختی‌نسبی (RBE) مربوط به رادیوایزوتوپ‌های مختلف ید به منظور مقایسه عملکرد کدهای مونت‌کارلوی MCSD و GEANT4-DNA در انرژی‌های پایین مورد ‌بررسی قرار گرفته است. پس از محاسبه طیف الکترون‌های اوژه حاصل از رادیوایزوتوپ‌های ید شامل 124123125I توسط کد مونت‌کارلوی GEANT4، محاسبه مقادیر RBE در افزونه GEANT4-DNA بادر نظر گرفتن مدل B-DNA صورت گرفت. علاوه‌بر این، مقادیر RBE نیز توسط کد MCDS در شرایط کاملاً هوازی برآورد شد. نتایج حاصل از این بررسی نشان داد که استفاده از فیزیک GEANT4-DNA-option4 در افزونه GEANT4-DNA در مرحله فیزیکی نتایج نزدیکتری را در مقایسه با کد MCDS جهت ارزیابی مولفه‌های زیست‌شناختی و تخمین RBE نشان می‌دهد. بیش‌ترین مقادیر اختلاف به‌دست‌آمده در این مطالعه مربوط به فیزیک GEANT4-DNA-option2 بوده که این میزان برای رادیوایزوتوپ‌های مورد‌بررسی از 22/3 درصد تا 24/6 درصد متغیر است. از آن‌جا که آسیب‌های دورشته‌ای ایجادشده در مولکولDNA در نهایت می‌تواند موجب مرگ سلول شود و با توجه به تطابق مناسب بین مقادیر محاسبه شده RBEDSB از طریق کدهای MCDS و GEANT4-DNA، می‌توان استنباط کرد که کد MCDS نتایج دقیقی را هنگام برآورد آسیب ایجادشده در مولکول DNA (ناشی از تابش‌های یونیزان) ارائه می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation and comparison of GEANT4-DNA and MCDS codes for the estimation of relative biological effectiveness relevant to the Auger electrons emitted from Iodine radioisotopes

نویسندگان [English]

  • Reza Shamsabadi
  • Hamid Reza Baghani
Physics Department, Hakim Sabzevari University, Sabzevar, Iran
چکیده [English]

In current study, the relative biological effectiveness (RBE) values relevant to the various Iodine radioisotopes, have been assessed to compare the performance of the MCSD and GEANT4-DNA Monte Carlo codes at low energy regions. After the calculation of the Auger electrons energy spectrum, obtained from the Iodine radioisotopes including 123I, 124I, and 125I through the GEANT4 Monte Carlo code, the calculation of the RBE values was performed through the GEANT4-DNA extension by considering the B-DNA model. In addition, the RBE values were also estimated by the MCDS code in completely aerobic conditions. The results of this study showed that employing the GEANT4-DNA-option4 physics by GEANT4-DNA extension in the physical stage provides near results in comparison with MCDS code for the radiobiological assessments and RBE estimation. The obtained highest difference values in this study were related to the use of GEANT4-DNA-option2 physics which varies from 22.30% to 24.60% for the studied radioisotopes. Since double strand damages along the DNA molecule can eventually lead to the cell death, and due to the appropriable agreement between the calculated results of RBEDSB values through the MCDS and GEANT4-DNA codes, it can be deduced that the MCDS code provides accurate results for the radiation induced DNA damage.

کلیدواژه‌ها [English]

  • Auger electrons
  • single strand breaks
  • double strand breaks
  • Monte Carlo simulation
  • relative biological effectiveness
  1. D. T. Goodhead, H. Nikjoo. Track structure analysis of ultrasoft X-rays compared to highand low-LET radiations. Int. J. Radiat. Biol. 55 (4) (1989) 513-529.
  2. A.Karimian, N. T. Ji, H. Song, G. Sgouros. Mathematical modeling of preclinical alpha-emitter radiopharmaceutical therapy. Cancer. Res. 80 (4) (2020) 868-876.
  3. M. Akbari, A. Karimian. Monte Carlo assessment of beam deflection and depth dose equivalent variation of a carbon-ion beam in a perpendicular magnetic field. Phys. Med.  61 (2019) 33-43.‏
  4. D. Sakata, N. Lampe, M. Karamitros, I. Kyriakou, O. Belov, M. A. Bernal, D. Bolst, M. C. Bordage, V. Breton, J. M. C. Brown, Z. Francis, V. Ivanchenko, S. Meylan, K. Murakami, S. Okada, I. Petrovic, A. Ristic-Fira, G. Santin, D. Sarramia, T. Sasaki, W. G. Shin, N. Tang, H. N. Tran, C. Villagrasa, D. Emfietzoglou, P. Nieminen, S. Guatelli, S. Incerti. Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA. Phys. Med. 62 (2019) 152-157.
  5. K. P. Chatzipapas, N. H. Tran, M. Dordevic, S. Zivkovic, S. Zein, W. G. Shin, D. Sakata, N. Lampe, J. M. C. Brown, A. Ristic-Fira, I. Petrovic, I. Kyriakou, D. Emfietzoglou, S. Guatelli, S. Incerti. Simulation of DNA damage using Geant4-DNA: an overview of the molecular DNA example application. Precis Radiat Oncol. (112) (2023) 102613.‏
  6. W. Friedland, M. Dingfelder, P. Kundrát, P. Jacob. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat. Res. 711 (2011) 28-40. 
  7. H. Nikjoo, R. Taleei, T. Liamsuwan, D. Liljequist, D. Emfietzoglou. Perspectives in radiation biophysics: from radiation track structure simulation to mechanistic models of DNA damage and repair. Rad. Phys. Chem. 128 (2016) 3-10.‏
  8. R. D. Stewart, V. K. Yu, A. G. Georgakilas, C. Koumenis, J.H. Park, D.J. Carlson. Effects of radiation quality and oxygen on clustered DNA lesions and cell death. Radiat. Res. 176 (2011) 587-602.
  9. Z. Francis, S. Incerti, M. Karamitros, H.N. Tran, C. Villagrasa. Stopping power and ranges of electrons, protons and alpha particles in liquid water using the Geant4-DNA package. Nucl. Instrum. Methods. Phys. Res. B. 269 (2011) 2307–2311.
  10. M. A. Bernal, M. C. Bordage, J. M. C. Brown, M. Davídková, E. Delage, Z. El Bitar, S.A. Enger, Z. Francis, S. Guatelli, V.N. Ivanchenko, M. Karamitros, I. Kyriakou, L. Maigne, S. Meylan, K. Murakami, S. Okada, H. Payno, Y. Perrot, I. Petrovic, Q.T. Pham, A. Ristic-Fira, T. Sasaki, V. Štěpán, H.N. Tran, C. Villagrasa, S. Incerti. Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys. Med. 31 (2015) 861-874.
  11. V. A. Semenenko, R. D. Stewart. Fast Monte Carlo simulation of DNA damage formed by electrons and light ions. Phys. Med. Biol. 51 (2006) 1693-1706.
  12. V. A. Semenenko, R. D. Stewart. A fast Monte Carlo algorithm to simulate the spectrum of DNA damages formed by ionizing radiation. Radiat. Res. 161 (2004) 451-457.‏
  13. RCSB Protein Data Bank (RCSB PDB). http://rcsb.org. [accessed 16 December 2022].
  14. Ottolenghi, G. Baiocco, V. Smyth, K. Trott. The ANDANTE project: a multidisciplinary approach to neutron RBE. Radiat. Prot. Dosimetry. 166 (2015) 311-315.
  15. A. Nikjoo, P. O’Neill, D. Goodhead, M. Terrisol. Computational Modelling of Low-energy Electron-induced DNA damage by early physical and chemical events. Int. J. Radiat. Biol. 71 (1997) 467-483.
  16. H. Mokari, M. H. Alamatsaz, H. Moeini, A.A. Babaei-Brojeny, R. Taleei. Track structure simulation of low energy electron damage to DNA using Geant4-DNA. Biomed. Phys. Engin. Exp. 4 (2018) 065009.‏
  17. A. O. Ezzati, A. Mahmoud-Pashazadeh, M.T. Studenski. Monte Carlo simulation of the RBE of I-131 radiation using DNA damage as biomarker. Australas. Phys. Eng. Sci. Med. 40 (2017) 395-400.
  18. S. Bakr, T. Kibédi, B. Tee, D. Bolst, M. Vos, M. Alotiby, L. Desorgher, D. H. Wright, A. Mantero, A. Rosenfeld, V. Ivanchenko, S. Incerti, S. Guatelli. A benchmarking study of Geant4 for Auger electrons emitted by medical radioisotopes. Appl. Radiat. Isot. 174 (2021) 109777.‏
  19. A. Zabihi, J. Tello, S. Incerti, Z. Francis, G. Forozani, F. Semsarha, A. Moslehi, M. A. Bernal. Determination of fast neutron RBE using a fully mechanistic computational model. Appl. Radiat. Isot. 156 (2020) 108952.
  20. M. A. Bernal, C. E. DeAlmeida, C. Sampaio, S. Incerti, C. Champion, P. Nieminen. The invariance of the total direct DNA strand break yield. Med. Phys. 38 (2011) 4147-53.
  21. Y. Wang, Z. Li, S. Zhang, W. Tang, X. Li, D. Chen, L. Sun. The influence of Geant4-DNA toolkit parameters on electron microdosimetric track structure. J. Radiat. Res. 61(1) (2020) 58-67.‏
  22. Y. Hsiao, R. D. Stewart. Monte Carlo simulation of DNA damage induction by x-rays and selected radioisotopes. Phys. Med. Biol. 53 (1) (2007) 233-244.