ارزیابی صحت محاسبه دز سیستم طراحی درمانISOgray برای میدان‌های تابشی مجاورهم در پرتودرمانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک پزشکی و رادیولوژی، دانشگاه علوم پزشکی کاشان، کاشان، اصفهان، ایران

2 مرکز توسعه تحقیقات بالینی، بیمارستان آیت الله یثربی (ره)، کاشان، اصفهان، ایران

چکیده

میدان‌های تابشی مجاورهم در برخی از روش‌های پرتودرمانی استفاده می­شوند. هنگام استفاده از میدان‌های تابشی مجاورهم، امکان خطاهای دز قابل توجهی در محل اتصال میدان‌ها محتمل است. بنابراین، صحت محاسبه دز در سیستم طراحی درمان باید کافی باشد. بر همین اساس، در مطالعه حاضر، به ارزیابی صحت محاسبه دز سیستم طراحی درمان ISOgray برای میدان مجاورهم پرداخته شد. برای ارزیابی صحت محاسبات دز، ابتدا پروفایل‌های دز با استفاده از دزیمتر Semiflex مدل TM31010 در فانتوم آب PTW-MP3 در عمق‌های 1، 5/1، 5 و 10 سانتی‌متری در ابعاد میدان‌های تابشی مختلف (6 × 6، 10 × 10 و 20 × 20 سانتی‌متر مربع) اندازه‌گیری شدند. در مرحله بعدی، محاسبات دز توسط سیستم طراحی درمان ISOgray انجام شد. در نهایت، پروفایل‌های دز اندازه‌گیری شده و محاسبه شده با استفاده از شاخص گاما با یکدیگر مقایسه شده و صحت محاسبات سیستم طراحی درمان ISOgray مورد ارزیابی قرار گرفت. صحت کلی محاسبات سیستم طراحی درمان در منطقه انبوهش دز (با معیار پذیرش 5 %DD=   و mm 3 DTA=) و ناحیه بعد از منطقه انبوهش دز (با معیار پذیرش 5 %DD=   وmm  3 DTA=) در محدوده‌ی قابل قبول بود. علاوه بر این، صحت کلی محاسبات دز تحت تأثیر ابعاد میدان قرار نگرفت. تجزیه و تحلیل یافته‌ها در محل اتصال میدان‌ها (match-line) نشان داد که صحت محاسبات دز برای پروفایل‌های دز در عمق 1 سانتی‌متری در محدوده قابل قبولی بود. به هرحال، صحت محاسبات دز برای عمق‌های دیگر کاهش یافت. یافته ها نشان دادند که صحت محاسبات دز کلی سیستم طراحی درمان ISOgray برای میدان‌های تابشی مجاورهم قابل قبول است. با این حال، صحت محاسبات دز ناحیه match-line برای عمق‌های پس از ناحیه انبوهش دز در محدوده قابل قبولی نبود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating the dose calculation accuracy of ISOgray radiotherapy treatment planning system for adjacent radiation fields

نویسندگان [English]

  • Ali Rasouli 1
  • Mahmud Naraqi Arani 2
  • Akbar Aliasgharzadeh 1
  • Bagher Farhood 1
1 Department of Medical Physics and Radiology, Kashan University of Medical Sciences, Kashan, Iran
2 The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
چکیده [English]

Adjacent radiation fields are applied in some radiotherapeutic cases. When using these radiation fields, considerable dose errors across the junction of radiation fields are possible. Therefore, it is necessary to evaluate the accuracy of the dose calculated by the treatment planning system (TPS) when using the adjacent radiation fields. The present study aimed to quantify the dose calculation accuracy of ISOgray TPS for the photon-photon adjacent fields. To assess the accuracy of dose calculations, the dose profiles were first measured by a Semiflex TM31010 at 1, 1.5, 5, and 10 cm depths for different field sizes (6 × 6, 10 × 10, and 20 × 20 cm2). In the second step, corresponding data were extracted from the ISOgray TPS. Finally, the dosimetric performance of TPS was evaluated using a gamma index analysis. The overall dose calculation accuracy of ISOgray TPS was within the acceptable range for the build-up region (with acceptance criteria of dose difference (DD) = 15% and distance to agreement (DTA) =3 mm) and the depths after the build-up region (with acceptance criteria of DD = 5% and DTA = 3 mm). Moreover, the overall accuracy of dose calculations was not affected by the field size. A more detailed analysis of the findings revealed that the accuracy of dose calculations in the match line regions of the adjacent radiation fields for 1cm beam profiles was within the acceptable range; however, it declined for other depths. The findings showed that the overall dose calculation accuracy of ISOgray TPS was acceptable for evaluated adjacent radiation fields. However, the accuracy of dose calculations in the match line regions of the adjacent radiation fields for the depth after build-up was not within the acceptable range.

کلیدواژه‌ها [English]

  • Radiotherapy
  • Treatment planning system
  • Dose calculation accuracy
  • ISOgray
  • Adjacent radiation field
1. F. Bray, M. Laversanne, E. Weiderpass, I. Soerjomataram. The everincreasing importance of cancer as a leading cause of premature death worldwide. Cancer. 127 (16) (2021) 3029-3030.
2. K. Mortezaee, A. Narmani, M. Salehi, H. Bagheri, B. Farhood, H. Haghi-Aminjan, M. Najafi. Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/ chemotherapy of cancer. Life Sci. 269 (2021) 119020
.
3. H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer. J. Clin. 71 (3) (2021) 209-249.
4. M. C. Montoya-González, N. E. Arias-Ortiz, W. A. Arboleda-Ruiz. Incidence, mortality and survival of endometrial cancer in Manizales, Colombia 2003-2017. Rev. Peru. Med. Exp. Salud. Publica. 38 (2022) 562-568.
5. S. Sheikholeslami, Sh. Khodaverdian, M. Dorri-Giv, S. M. Hosseini, Sh. Souri, R. Abedi-Firouzjah, H. Zamani, L. Dastranj, B. Farhood. The radioprotective effects of alpha-lipoic acid on radiotherapy-induced toxicities: A systematic review. Int. Immunopharmacol. 96 (2021) 107741.
6. S. Sheikholeslami, T. Aryafar, R. Abedi-Firouzjah, A. Banaei, M. Dorri-Giv, H. Zamani, Gh. Ataei, M. Majdaeen, B. Farhood. The role of melatonin on radiation-induced pneumonitis and lung fibrosis: A systematic review. Life Sci. 281 (2021) 119721.
7. G. Delaney, S. Jacob, C. Featherstone, M. Barton. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidencebased clinical guidelines. Cance. 104 (6) (2005) 1129-1137.
8. A. C. Begg, F. A. Stewart, C. Vens. Strategies to improve radiotherapy with targeted drugs. Nat. Rev. Cancer. 11 (4) (2011) 239-253.
9. K. Mortezaee, W. Parwaie, E. Motevaseli, H. Mirtavoos-Mahyari, A. E. Musa, D. Shabeeb, F. Esmaely, M. Najafi, B. Farhood. Targets for improving tumor response to radiotherapy. Int Immunopharmacol. 76 (2019) 105847.
10. B. Glimelius, J. Bergh, L. Brandt, B. Brorsson, B. Gunnars, L. Hafström, U. Haglund, T. Högberg, K. G. Janunger, P. E. Jönsson, G. Karlsson, E. Kimby, G. Lamnevik, S. Nilsson, J. Permert, P. Ragnhammar, S. Sörenson, P. Nygren. The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of chemotherapy effects in some major tumour types-summary and conclusions. Acta Oncol. 40 (2-3) (2001) 135-154.
11. J. Van Dyk, R. B. Barnett, J. E. Cygler, P. C. Shragge. Commissioning and quality assurance of treatment planning computers. Int. J. Radiat. Oncol. Biol. Phys. 26 (2) (1993) 261-273.
12. E. Gershkevitsh, R. Schmidt, G. Velez, D. Miller, E. Korf, F. Yip, S. Wanwilairat, S. Vatnitsky. Dosimetric verification of radiotherapy treatment planning systems: Results of IAEA pilot study. Radiother Oncol. 89 (3) (2008) 338-346.
13. M. Hasani, B. Farhood, M. Ghorbani, H. Naderi, S. Saadatmand, S. Karimkhani Zandi, C. Knaup. Effect of computed tomography number-relative electron density conversion curve on the calculation of radiotherapy dose and evaluation of Monaco radiotherapy treatment planning system. Australas. Phys. Eng. Sci. Med. 42 (2) (2019) 489-502.
14. M. T. B. Toossi, B. Farhood, S. Soleymanifard, Evaluation of dose calculations accuracy of a commercial treatment planning system for the head and neck region in radiotherapy. Rep. Pract. Oncol. Radiother. 22 (5) (2017) 420-427.
15. B. Fraass, K. Doppke, M. Hunt, G. Kutcher, G. Starkschall, R. Stern, J. Van Dyke. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: quality assurance for clinical radiotherapy treatment planning. Med. Phys. 25 (10) (1998) 1773-1829.
16. B. Mijnheer, A. Olszewska, C. Fiorino, G. Hartmann, T. Knöös, J. C. Rosenwald, H. Welleweerd. Quality assurance of treatment planning systems: practical examples for non-IMRT photon beams. Brussels: ESTRO, 2004.
17. S. Vatnitsky. Specification and acceptance testing of radiotherapy treatment planning systems. International Atomic Energy Agency, 2007
.
18. J. Venselaar, H. Welleweerd. Application of a test package in an intercomparison of the photon dose calculation performance of treatment planning systems used in a clinical setting. Radiother Oncol. 60 (2) (2001) 203-213.
19. TecDoc 1583: commissioning of radiotherapy treatment planning systems: testing for typical external beam treatment techniques. Vienna: International Atomic Energy Agency, 2008
.
20. D. A. Low, W. B. Harms, S. Mutic, J. A. Purdy. A technique for the quantitative evaluation of dose distributions. Med. Phys. 25 (5) (1998) 656-661.
21. M. Stasi, S. Bresciani, A. Miranti, A. Maggio, V. Sapino, P. Gabriele. Pretreatment patientspecific IMRT quality assurance: a correlation study between gamma index and patient clinical dose volume histogram. Med. Phys. 39 (12) (2012) 7626-7634.
22. A. M. Bacala, Linac photon beam fine-tuning in PRIMO using the gamma-index analysis toolkit. Radiat. Oncology. 15 (1) (2020) 1-11.
23. T. Ju, T. Simpson, J. O. Deasy, D. A. Low. Geometric interpretation of the dose distribution comparison technique: Interpolation‐free calculation. Med. Phys. 35 (3) (2008) 879-887.
24. H. Li, L. Dong, L. Zhang, J. N. Yang, M. T. Gillin, X. R. Zhu. Toward a better understanding of the gamma index: Investigation of parameters with a surfacebased distance method. Med. Phys. 38 (12) (2011) 6730-6741.
25. D. A. Low, J. F. Dempsey, Evaluation of the gamma dose distribution comparison method. Med. Phys. 30 (9) (2003) 2455-2464.
26. A. Bakai, M. Alber, F. Nüsslin. A revision of the γ-evaluation concept for the comparison of dose distributions. Phys. Med. Biol. 48 (21) (2003) 3543.
27. S. Hariri Tabrizi, N. Heidarloo, M. Tavallaie, Introduction of a reliable software for the calculation of the gamma index. Iranian J. Med. Phys. 17 (3) (2020) 133-136.
28. T. Dawod, M. Mosad, Y. Rostom, M. Abouzeid. IMRT commissioning and verification measurements on Siemens (ARTISTE) Linear Accelerator. Res. Oncol. 8 (1-2) (2012) 18-25.
29. J. Venselaar, H. Welleweerd, B. Mijnheer. Tolerances for the accuracy of photon beam dose calculations of treatment planning systems. Radiother Oncol. 60 (2) (2001) 191-201.
30. B. Farhood, B. Farhood, M. T. Bahreyni Toossi, M. Ghorbani, E. Salari, C. Knaup. Assessment the accuracy of dose calculation in build-up region for two radiotherapy treatment planning systems. J. Cancer Res. Ther. 13 (6) (2017) 968-973.
31. A. Fogliata, G. Nicolini, A. Clivio, E. Vanetti, P. Mancosu, L. Cozzi. Dosimetric validation of the acuros XB advanced dose calculation algorithm: fundamental characterization in water. Phys. Med. Biol. 56 (6) (2011) 1879-1904.
32. IAEA Technical Reports Series No. 430: Commissioning and quality assurance of computerized planning systems for radiation treatment of cancer. Vienna: International Atomic Energy Agency, 2004.
33. B. Farhood, M. T. Bahreyni Toossi, Sh. Soleymanifard, T. Mortezazadeh. Assessment of the accuracy of dose calculation in the build-up region of the tangential field of the breast for a radiotherapy treatment planning system. Contemp. Oncol. 21 (3) (2017) 232-239
.
34. M. Bahreyni Toossi, Sh. Soleymanifard, B. Farhood, Sh. Mohebbi, D. Davenport. Assessment of accuracy of out-of-field dose calculations by TiGRT treatment planning system in radiotherapy. J. Cancer Res. Ther. 14 (3) (2018) 634-639.
35. M. T. B. Toossi, Sh. Soleymanifard, B. Farhood, A. Farkhari, C. Knaup. Evaluation of electron dose calculations accuracy of a treatment planning system in radiotherapy of breast cancer with photonelectron technique. J. Cancer Res. Ther. 14 (12) (2018) S1110-S1116.
36. L. R. J. Day, M. Donzelli, P. Pellicioli, L. M. L. Smyth, M. Barnes, S. Bartzsch, J. C. Crosbie. A commercial treatment planning system with a hybrid dose calculation algorithm for synchrotron radiotherapy trials. Phys. Med. Biol. 66 (5) (2021) 055016.
37. A. Eldib, D. Zhang, M. H. Abdelgawad, M. Hossain, C. C. Ma. Dosimetric evaluation of the capabilities of two clinical treatment planning systems for prostate cancer. Radiat. Phys. Chem. 188 (2021) 109642.
38. L. Mahmoudi, K. Mostafanezhad, A. Zeinali. Performance evaluation of a Monte Carlo-based treatment planning system in out-of-field dose estimation during dynamic IMRT with different dose rates. Inform. Med. Unlocked. 29 (2022) 100.0912.