نوع مقاله : مقاله پژوهشی
نویسنده
گروه فیزیک، دانشکده علوم، دانشگاه صنعتی خاتم الانبیاء (ص) بهبهان، بهبهان، ایران
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسنده [English]
By defining random quantities related to microscopic structures, microdosimetry can provide accurate information about the effects of radiation. Using the µ-randomness method and the Geant4-DNA code, in a sphere of water for low energy electrons in the energy range of 0.1 to 4.5 keV, the microdosimetric values of the frequency-mean lineal energy, dose-mean lineal energy, frequency-mean specific energy, and dose-mean specific energy were calculated. In this study, target volumes including cylinders with dimensions (height × diameter) of 23 × 23 equivalent to DNA volume, 50 × 100 equivalent to nucleosome volume, and 300 × 300 angstroms equivalent to the volume of chromatin fiber were selected. Examining the frequency-mean lineal energy and dose-mean lineal energy, it was observed that the trend of changes in the energy of the primary electrons is similar to the trend of changes in the damage of the same electrons in the DNA. The research results are also compared with the existing results of the simulation with the PITS and KURBUC codes. Differences in the results of this study were observed with the results of PITS and KURBUC codes, which is due to differences in the cross-sections of the electron used in the codes under study. In the Geant4-DNA code, for example, for low-energy electrons, the ionization and excitation cross-sections are smaller than those obtained by other codes.
کلیدواژهها [English]