نقش تزریق نانو ذرات طلا در تقویت درمان تومور سینه

نوع مقاله : مقاله کنفرانسی

نویسندگان

گروه فیزیک، دانشکده علوم، دانشگاه آزاد اسلامی واحد شیراز، شیراز، فارس، ایران

چکیده

در این تحقیق، افزایش دز سلول‌های سرطانی در مقایسه با سلول‌های سالم با افزودن نانوذرات طلا به تومور انجام می‌شود. نانوذرات طلا به‌دلیل زیست‌سازگاری و سمیت پایین در سال‌های اخیر مورد توجه قرار گرفته است. نتایج مطالعات در این زمینه نشان‌دهنده افزایش دز تابش تومور با نانوذرات طلا است.

 

کلیدواژه‌ها


عنوان مقاله [English]

The Role of Gold Nanoparticles Injection in Enhancement Breast Tumor

نویسندگان [English]

  • Seyede Nasrin Hosseinimotlagh
  • Fatemeh Habibi
  • Jahangir Bayat
Department of Physics, Islamic Azad University, Shiraz, Fars, Iran
چکیده [English]

In this research, Increasing the dose of cancer cells compared to normal cells is done by adding gold nanoparticles to the tumor.Gold nanoparticles due to biocompatibility and low toxicity have been considered in recent years. Results of studies in this field represents an increase in radiation dose to the tumor with gold nanoparticles is reached.

کلیدواژه‌ها [English]

  • protons
  • breast
  • treatment
  • gold
  • nanoparticles
  1. N. Restuccia, L. Torrisi. Nanoparticles generated by laser in liquids as contrast medium and radiotherapy intensifiers. EPJ. Web of Conferences 167 (2018) 04007.
  2. J. E. Turner. Atoms, Radiation, and Radiation Protection, 2nd ed., Wiley Interscience Publication, NewYork, 1995.
  3. R. C. Murty. Effective atomic numbers of heterogeneous materials. Nature 207 (1965( 398-399.
  4. P. M. Tiwari, K. Vig, V. A. Dennis, S. R. Singh. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials (Basel) 1 (1) (2011( 31-63.
  5. L. Torrisi, N. Restuccia, S. Cuzzocrea, I. Paterniti, I. Ielo, S. Pergolizzi, M. Cutroneo, L. Kovacik. Laser-produced Au nanoparticles as X-ray contrast agents for diagnostic imaging. Gold Bull. 50 )2017( 51-60.
  6. A. Bonfrate, J. Farah, L. De Marzi, S. Delacroix, J. Hérault, R. Sayah, C. Lee, W.E. Bolch, I. Clairand. Influence of beam incidence and irradiation parameters on stray neutron doses to healthy organs of pediatric patients treated for an intracranial tumor with passive scattering proton therapy. Phys. Med. 32 (4) (2016) 590-599.
  7. M. Moteabbed, T. I. Yock, N. Depauw, T. M. Madden, H. M. Kooy, H. Paganetti. Impact of spot size and beam-shaping devices on the treatment plan quality for pencil beam scanning proton therapy. Int. J. Radiat. Oncol. Biol. Phys. 95 (1) (2016) 190-198.
  8. D. Peukert, I. Kempson, M. Douglass, E. Bezak. Gold Nanoparticle enhanced proton therapy: Monte Carlo modeling of reactive species distributions around a gold nanoparticle and the effects of nanoparticle proximity and clustering. Int. J. Mol. Sci. 20(17) (2019) 4280.
  9. J. F. Dorsey, L. Sun, D. Y. Joh. A. Witztum, G. D. Kao, M. Alonso-Basanta, S. Avery, S. M. Hahn, A. Al Zaki, A. Tsourkas. Gold nanoparticles in radiation research: potential applications for imaging and radiosensitization. Transl. Cancer Res. 2 (4) (2013) 280-291.
  10. J. F. Hainfeld, F. A. Dilmanian, Z. Zhong, D. N. Slatkin, J. A. Kalef-Ezra, H. M. Smilowitz. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys. Med. Biol. 55 (11) (2010) 3045-59.
  11. S. D. Jo, S. H. Ku, Y. Y. Won, S. H. Kim, I. C. Kwon. Targeted nanotheranostics for future personalized medicine: Recent progress in cancer therapy. Theranostics 6 (9) (2016) 1362-1377.