کاهش اثر تخریبی سیگنا‌ل‌های اشیا فلزات در تصاویر ناحیه دهان به‌وسیله شبکه عصبی بهینه به‌منظور بهبود کیفیت درمان به‌هنگام پرتودهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی هسته‌ای، مهندسی پرتوپزشکی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران

2 گروه فیزیک پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی ایران، تهران

چکیده

این پژوهش می‌تواند در پرتودرمانی بیماران مبتلا به انواع مختلف سرطان با پروتزهای فلزی به‌منظور افزایش کیفیت تصاویر سی‌تی‌اسکن برای تشخیص بهتر ناحیه درمان و کاهش دز دریافتی، صورت گیرد. در این پژوهش به‌منظور کاهش اثر سیگنال اشیا فلزی ایجاد شده در تصاویر سی‌تی‌اسکن ناحیه دهان، پارامترهای کیفیت تصاویر سی‌تی‌اسکن سر و گردن 20 بیمار مبتلا به سرطان سر و گردن دارای سیگنال اشیا فلزی بررسی شده و میزان بهبود کیفیت تصاویر بیماران با تصاویر پس از اصلاح سیگنال اشیا فلزی مقایسه شده است، هم‌چنین میزان دز دریافتی بیماران نیز بررسی شده است. بدین منظور تصاویر اصلاح شده‌ای به‌وسیله دو مدل شبکه عصبی ساخته شده تا عملکرد شبکه‌های عصبی به‌وسیله پارامترهای کیفیت تصاویر ارزیابی گردد تا شبکه عصبی مطلوب پیدا شود. در شبکه عصبی مولد تخاصمی، در برخی نقاط مانند غدد بزاقی و اطراف دندان دارای فلز تا %61/94 بهبود کیفیت تصویر صورت گرفته که در مقایسه با شبکه عصبی لایه‌به‌لایه تا حدود %36/72 عملکرد بهتری داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Decrease in destructive effects of metal artifacts in mouth area images by optimized neural network to improve treatment quality through radiotherapy

نویسندگان [English]

  • Goli Khaleghi 1
  • Mohammad Hosntalab 1
  • Mahdi Sadeghi 2
  • Reza Reiazi 2
  • Seyed Rabie Mahdavi 2
1
2
چکیده [English]

In this study, in order to reduce the effects of metal artifacts caused by metal objects in CT scan images of the mouth area, we investigated the quality parameters of head and neck CT scan images of patients before and after the presence of artifacts and evaluated the changes in quality image parameters to improve the quality of radiotherapy after modifying the images. For this purpose, first, we provided CT scan images of 20 patients with head and neck cancers with and without metal objects in the mouth area and compared the absorbed dose in patients with and without metal objects. Then, in order to prevent the destructive effects of images with artifacts in diagnosis and treatment process in radiotherapy, we created modified images by two different neural network models and evaluated the performance of neural networks by image quality parameters to find the effective neural network. By generative adversarial neural network, in some places around salivary glands and teeth with metal, up to 94% improvement has been achieved in image quality metrics, which is up to 70% better than the convolutional neural network. This study can be done to improve the quality of treatment in radiotherapy on patients with different types of cancer, especially with metal prostheses, in order to improve the quality of CT scan images for better diagnosis and contouring of the therapeutic area and reduce the dose received by patients through radiotherapy.

کلیدواژه‌ها [English]

  • Metal artifacts
  • Neural networks
  • bucal area dose
  • Radiotherapy
  • CT Scan
  • Quality image metrics
[1] M. Abdoli, R.A. Dierckx, H. Zaidi. Metal artifact reduction strategies for improved attenuation correction in hybrid PET/CT imaging, Medical physics, 39(6) (2012) 3343–3360.
[2] J.Y. Huang, J.R. Kerns, J.L. Nute, X. Liu, P.A. Balter, F.C. Stingo, S.F. Kry. An evaluation of three commercially available metal artifact reduction methods for CT imaging, Physics in Medicine & Biology, 60(3) (2015) 1047.
[3] D. Wagenaar, E.R. van der Graaf, A. van der Schaaf, M.J. Greuter. Quantitative comparison of commercial and non-commercial metal artifact reduction techniques in computed tomography, PLoS One, 10(6) (2015) e0127932.
[4] H.M. Parenica, J.R. Ford, P. Mavroidis, Y. Li, N. Papanikolaou, S. Stathakis. Treatment planning dose accuracy improvement in the presence of dental implants, Medical Dosimetry, 44(2) (2019) 159–166.
[5] L. Gjesteby, Q. Yang, Y. Xi, H. Shan, B. Claus, Y. Jin, G. Wang. Deep learning methods for CT image-domain metal artifact reduction, In Developments in X-Ray Tomography XI International Society for Optics and Photonics, 10391 (2017) 103910W. 
[6] E.J. Laguda. Dosimetric Evaluation of Metal Artefact Reduction using Metal Artefact, Doctoral dissertation, Duke University (2016).
[7] D. Giantsoudi, B. De Man, J. Verburg, A. Trofimov, Y. Jin, G. Wang, H. Paganetti. Metal artifacts in computed tomography for radiation therapy planning: dosimetric effects and impact of metal artifact reduction, Physics in Medicine & Biology, 62(8) (2017) R49.
[8] Y. Zhang, H. Yu. Convolutional neural network based metal artifact reduction in x-ray computed tomography, IEEE transactions on medical imaging, 37(6) (2018) 1370–1381.
[9] J. Wang, Y. Zhao, J.H. Noble, B.M. Dawant. Conditional generative adversarial networks for metal artifact reduction in CT images of the ear, In International Conference on Medical Image Computing and Computer-Assisted Intervention (2018) 3–11. 
[10] R. Dey, D. Bhattacharjee, M. Nasipuri. Image Denoising Using Generative Adversarial Network. In Intelligent Computing: Image Processing Based Applications, (2020) 73–90.
[11] G. Khaleghi, M. Hosntalab, M. Sadeghi, R. Reiazi, S.R. Mahdavi. Metal artifact reduction in computed tomography images based on developed generative adversarial neural network, Informatics in Medicine Unlocked, 24 (2021) 100573.
[12] G. Khaleghi, H. Mahdavi, S.R. Mahdavi, B. Khajetash, A. Nikoofar, M. Hosntalab, M. Sadeghi, R. Reiazi. Investigating dose homogeneity in radiotherapy of oral cancers in the presence of a dental implant system: an in vitro phantom study, International Journal of Implant Dentistry, 7(1) (2021) 1–8.
[13] K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang. Beyond a Gaussian denoiser: Residual Learning of Deep CNN for image denoising, IEEE transactions on image processing, 26 (2017) 3142–3155.
[14] X. Zhang, J. Zou, K. He, J. Sun. Accelerating Very Deep Convolutional Networks for Classification and Detection, Pattern Analysis and Machine Intelligence, 38 (2016) 1943–1955.
[15] X. Yi, E. Walia, P. Babyn. Generative adversarial network in medical imaging: A review, Medical image analysis, 58 (2019) 101552.
[16] S. Van der Walt, J.L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J.D. Warner, N. Yager, E. Gouillart, T. Yu. scikit-image: image processing in Python, PeerJ, 2 (2014) e453. 
 [17] J.P. Mullins, M.P. Grams, M.G. Herman, D.H. Brinkmann, J.A. Antolak. Treatment planning for metals using an extended CT number scale, Journal of applied clinical medical physics, 17(6) (2016) 179–188.
[18] Z. Chen, Z. Zeng, H. Shen, X. Zheng, P. Dai, P. Ouyang. DN-GAN: Denoising generative adversarial networks for speckle noise reduction in optical coherence tomography images, Biomedical Signal Processing and Control, 55 (2020) 101632.
[19] M. Nakao, K. Imanishi, N. Ueda, Y. Imai, T. Kirita, T. Matsuda. Regularized three-dimensional generative adversarial nets for unsupervised metal artifact reduction in head and neck CT images, IEEE Access, 8 (2020) 109453–109465.
[20] JM. Wolterink, T. Leiner, MA. Viergever, I. Išgum. Generative adversarial networks for noise reduction in low-dose CT, IEEE transactions on medical imaging, 36(12) (2017) 2536–2545.