[1] M. Abdoli, R.A. Dierckx, H. Zaidi. Metal artifact reduction strategies for improved attenuation correction in hybrid PET/CT imaging, Medical physics, 39(6) (2012) 3343–3360.
[2] J.Y. Huang, J.R. Kerns, J.L. Nute, X. Liu, P.A. Balter, F.C. Stingo, S.F. Kry. An evaluation of three commercially available metal artifact reduction methods for CT imaging, Physics in Medicine & Biology, 60(3) (2015) 1047.
[3] D. Wagenaar, E.R. van der Graaf, A. van der Schaaf, M.J. Greuter. Quantitative comparison of commercial and non-commercial metal artifact reduction techniques in computed tomography, PLoS One, 10(6) (2015) e0127932.
[4] H.M. Parenica, J.R. Ford, P. Mavroidis, Y. Li, N. Papanikolaou, S. Stathakis. Treatment planning dose accuracy improvement in the presence of dental implants, Medical Dosimetry, 44(2) (2019) 159–166.
[5] L. Gjesteby, Q. Yang, Y. Xi, H. Shan, B. Claus, Y. Jin, G. Wang. Deep learning methods for CT image-domain metal artifact reduction, In Developments in X-Ray Tomography XI International Society for Optics and Photonics, 10391 (2017) 103910W.
[6] E.J. Laguda. Dosimetric Evaluation of Metal Artefact Reduction using Metal Artefact, Doctoral dissertation, Duke University (2016).
[7] D. Giantsoudi, B. De Man, J. Verburg, A. Trofimov, Y. Jin, G. Wang, H. Paganetti. Metal artifacts in computed tomography for radiation therapy planning: dosimetric effects and impact of metal artifact reduction, Physics in Medicine & Biology, 62(8) (2017) R49.
[8] Y. Zhang, H. Yu. Convolutional neural network based metal artifact reduction in x-ray computed tomography, IEEE transactions on medical imaging, 37(6) (2018) 1370–1381.
[9] J. Wang, Y. Zhao, J.H. Noble, B.M. Dawant. Conditional generative adversarial networks for metal artifact reduction in CT images of the ear, In International Conference on Medical Image Computing and Computer-Assisted Intervention (2018) 3–11.
[10] R. Dey, D. Bhattacharjee, M. Nasipuri. Image Denoising Using Generative Adversarial Network. In Intelligent Computing: Image Processing Based Applications, (2020) 73–90.
[11] G. Khaleghi, M. Hosntalab, M. Sadeghi, R. Reiazi, S.R. Mahdavi. Metal artifact reduction in computed tomography images based on developed generative adversarial neural network, Informatics in Medicine Unlocked, 24 (2021) 100573.
[12] G. Khaleghi, H. Mahdavi, S.R. Mahdavi, B. Khajetash, A. Nikoofar, M. Hosntalab, M. Sadeghi, R. Reiazi. Investigating dose homogeneity in radiotherapy of oral cancers in the presence of a dental implant system: an in vitro phantom study, International Journal of Implant Dentistry, 7(1) (2021) 1–8.
[13] K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang. Beyond a Gaussian denoiser: Residual Learning of Deep CNN for image denoising, IEEE transactions on image processing, 26 (2017) 3142–3155.
[14] X. Zhang, J. Zou, K. He, J. Sun. Accelerating Very Deep Convolutional Networks for Classification and Detection, Pattern Analysis and Machine Intelligence, 38 (2016) 1943–1955.
[15] X. Yi, E. Walia, P. Babyn. Generative adversarial network in medical imaging: A review, Medical image analysis, 58 (2019) 101552.
[16] S. Van der Walt, J.L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J.D. Warner, N. Yager, E. Gouillart, T. Yu. scikit-image: image processing in Python, PeerJ, 2 (2014) e453.
[17] J.P. Mullins, M.P. Grams, M.G. Herman, D.H. Brinkmann, J.A. Antolak. Treatment planning for metals using an extended CT number scale, Journal of applied clinical medical physics, 17(6) (2016) 179–188.
[18] Z. Chen, Z. Zeng, H. Shen, X. Zheng, P. Dai, P. Ouyang. DN-GAN: Denoising generative adversarial networks for speckle noise reduction in optical coherence tomography images, Biomedical Signal Processing and Control, 55 (2020) 101632.
[19] M. Nakao, K. Imanishi, N. Ueda, Y. Imai, T. Kirita, T. Matsuda. Regularized three-dimensional generative adversarial nets for unsupervised metal artifact reduction in head and neck CT images, IEEE Access, 8 (2020) 109453–109465.
[20] JM. Wolterink, T. Leiner, MA. Viergever, I. Išgum. Generative adversarial networks for noise reduction in low-dose CT, IEEE transactions on medical imaging, 36(12) (2017) 2536–2545.