[1] X. Ren, E. Jabbour Almaalouf, A. Dorn and S. Denifl. Direct evidence of two interatomic relaxation mechanisms in argon dimers ionized by electron impact, Nature Communications, 7 (2016) 11093.
[2] R. Baskar, K.A. Lee, R. Yeo and K.W. Yeoh. Cancer and radiation therapy: current advances and future directions, International Journal of Medical Sciences, 9 (2012) 193–199.
[3] B.D. Michael and P.A. O’Neill. Sting in the tail of electron tracks, Science, 287 (2000) 1603–1604.
[4] M.A. Huels, B. Boudaffa, P. Cloutier, D. Hunting and L. Sanche. Single, double and multiple double strand breaks induced in DNA by 3-100 eV electrons, Journal of the American Chemical Society, 125 (2003) 4467–4477.
[5] S.M. Pimblott and J.A. Laverne. Production of low- energy electrons by ionizing radiation, Radiation Physics and Chemistry, 76 (2007) 1244–1247.
[6] B. Boudaiffa, P. Cloutier, D. Hunting, M.A. Huels and L. Sanche. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons, Science, 287 (2000) 1658–1660.
[7] E. Alizadeh and L. Sanche. Precursors of solvated electrons in radiobiological physics and chemistry, Chemical Reviews, 112 (2012) 5578–5602.
[8] S.K. Kim, W. Lee and D.R. Herschach. Cluster beam chemistry: hydration of nucleic acid bases; Ionization potentials of hydrated adenine and thymine, The Journal of Physical Chemistry, 100 (1996) 7933–7937.
[9] Y. Zheng, P. Cloutier, D.J. Hunting, J.R. Wagner and L. Sanche. Phosphodiesterand N-glycosidic bond cleavage in DNA intuced by 4-15 eV electrons, The Journal of Chemical Physics, 124 (2006) 64710.
[10] T. Solomun, H. Seitz and H. Sturm. DNA damage by low-energy electron impact: dependence on guanine content, The Journal of Physical Chemistry B, 113 (2009) 11557–11559.
[11] Z. Li, Y. Zheng, P. Cloutier, L. Sanche and J.R. Wagner. Low energy electron induced DNA damage: effects of terminal phosphate and base moieties on the distribution of damage, Journal of the American Society, 130 (2008) 5612–5613.
[12] S. Ptasinska, S. Denifl, P. Scheier and T.D. Märk. Inelastic electron interaction (attachment/ionization) with deoxyribose, The Journal of Chemical Physics, 120 (2004) 8505–8511.
[13] S. Heinbuch, F. Dong, J.J. Rocca and E.R. Bernstein. Single photon ionization of hydrogen bonded clusters with a soft x-ray laser: (HCOOH)x and (HCOOH)y(H2O)z, The Journal of Chemical Physics, 126 (2007) 244301.
[14] B. Liu, S. Brondsted, P. Hvelplund, H. Zettergren, H. Cederquist, B. Manil and B.A. Huber. Collision-induced dissociation of hydrated adenosine monophosphate nucleotide ions: protection of the ion in water nanoclusters, Physical Review Letters, 97 (2006) 13340.
[15] L. Belau, K.R. Wilson, S.R. Leone and M. Ahmed. Vacuum-ultraviolet photoionization studies of the microhydration of DNA bases (guanine, cytosine, adenine, and thymine), The Journal of Physical Chemistry A, 111 (2007) 7562–7568.
[16] P. Markush, P. Bolognesi, A. Cartoni, P. Rousseau, S. Maclot, R. Delaunay, A. Domaracka, J. Kocisek, M.C. Castrovilli, B.A. Huber and L. Avaldi. The role of the environment in the ion induced fragmentation of uracil, Physical Chemistry Chemical Physics, 18 (2016) 16721–16729.
[17] T. Schlathölter, F. Alvarado, S. Bari, A. Lecointre, R. Hoekstra, V. Bernigaud, B. Manil, J. Rangama and B. Huber. Ion-induced biomolecular radiation damage: From isolated nucleobases to nucleobase clusters, ChemPhysChem, 7(2006) 2339–2345.
[18] M. Neustetter, M. Mahmoodi-Darian and S. Denifl. Study of electron ionization and fragmentation of non-hydrated and hydrated tetrahydrofuran clusters, Journal of the American Society for Mass Spectrometry, 28 (2017) 866–872.
[19] S. Agostinelli, J. Allison, K.A. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee and G. Barrand. GEANT4—a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3) (2003) 250–303.
[20] E. Polig, D.B. Kimmel and W.S.S. Jee. Morphology of bone cell nuclei and their location relative to bone surfaces, Physics in Medicine and Biology, 29 (1984) 939-952.
[21] S.A. Zein, M.C. Bordage, Z. Francis, G. Macetti, A. Genoni, C. Dal Capello, W.G. Shin and S. Incerti. Electrons transport in DNA bases: An extention of the Geant4-DNA MontCarlo toolkit, Nuclear Instruments and Methods in Physics Research B, 488 (2021) 70-82.
[22] I. Kyriakou, D. Emfietzoglou and S. Incerti. Status and Extension of the Geant4-DNA Dielectric Models for Application to Electron Transport, Frontiers in Physics, 9 (2022) 711317.
[23] I. Kyriakou, M. Sefl, V. Nourry and S. Incerti. The impact of new Geant4-DNA cross section models on electron track structure simulations in liquid water, Journal of Applied Physics, 119 (2016) 194902.
[24] H.N. Tran, D.D. Dao, S. Incerti, M.A. Bernal, M. Karamitros, T.V. Nhan Hao, T.M. Dang and Z. Francis. Single electron ionization and electron capture cross sections for (C6+, H2O) interaction within the Classical Trajectory Monte Carlo (CTMC) approach, Nuclear Instruments and Methods in Physics Research B, 366 (2016) 140-144.
[25] I. Kyriakou, S. Incerti and Z. Francis. Improvements in Geant4 energy-loss model and the effect on low-energy electron transport in liquid water, Medical Physics, 42 (2015) 3870-3876.
[26] G. Famulari, P. Pater and S.A. Enger. Microdosimetry calculations for monoenergetic electrons using Geant4-DNA combined with a weighted track sampling algorithm, Physics in Medicine and Biology, 62 (2017) 5495-5508.
[27] I. Kyriakou, D. Emfietzoglou, V. Ivanchenko, M.C. Bordage, S. Guatelli, P. Lazarakis, H.N. Tran and S. Incerti. Microdosimetry of electrons in liquid water using the low-energy models of Geant4, Journal of Applied Physics, 122 (2017) 024303.
[28] J. Bordes, S. Incerti, N. Lampe, M. Bardies and M.C. Bordage. Low-energy electron dose-point kernel simulations using new physics models implemented in Geant4-DNA, Nuclear Instruments and Methods in Physics Research B, 398 (2017) 13-20.
[29] S. Incerti, I. Kyriakou and H.N. Tran. Geant4-DNA simulation of electron slowing-down spectra in liquid water, Nuclear Instruments and Methods in Physics Research B, 397 (2017) 45-50.
[30] J. Tomasi, B. Mennucci and R. Cammi. Quantum Mechanical Continuum Solvation Models, Chemical Reviews, 105 (2005) 2999−3093.
[31] B. Mennucci and R. Cammi. Continuum Solvation Models in Chemical Physics: From Theory to Applications, John Wiley & Sons, Ltd, (2007).
[32] P.M. Mayer, P.M, M.F. Guest, L. Cooper, L.G. Shpinkova, E.E. Rennie, D.M.P. Holland and D.A. Shaw. Does tetrahydrofuran ring open upon ionization and dissociation? A TPES and TPEPICO investigation, The Journal of Physical Chemistry A, 113 (2009) 10923-10932.
[33] E.J. Gallegos and R.W. Kiser. Electron impact spectroscopy of the four-and five-membered, saturated heterocyclic compounds containing nitrogen, oxygen and sulfur, The Journal of Physical Chemistry, 66 (1962) 136-145.
[34] J.E. Collin and G. Conde-Caprace. Ionization and dissociation of cyclic ethers by electron impact, International Journal of Mass Spectrometry and Ion Physics, 1 (1968) 213-225.
[35] E. Wang, X. Ren, W. Baek, H. Rabus, T. Pfeifer and A. Dorn. Water acting as a catalyst for electron-driven molecular break-up of tetrahydrofuran, Nature Communications, 11 (2020) 2194.