بررسی اثر نانوذرات طلا و تزریق بورن در درمان پروتون‌تراپی سرطان سینه با کد Gate7/Geant4

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشگاه پیام نور واحد تهران، تهران

2 گروه فیزیک، دانشگاه آزاد اسلامی واحد شیراز، شیراز، فارس

چکیده

پس از جراحی، پرتودرمانی رایج‌ترین و موفق‌ترین روش درمانی مورد استفاده است که نقش مهمی در درمان سرطان دارد. در پروتون‌درمانی، باریکه پروتون به تومور تابانده می‌شوند. برای افزایش کارایی درمان تومورهای سینه، نانوذرات طلا GNP) ) و محلول بورن‌کپتات‌سدیم(BSH)  حاوی بورن-۱۱ را می‌توان به‌طور جداگانه به تومور تزریق کرد و سپس آن را تحت تابش پرتوی پروتونی قرار داد. در این تحقیق به‌کمک شبیه‌سازی Geant4/Gate7 با تأیید افزایش دز رسیده به بافت تومور سینه در پروتون‌درمانی از طریق دو مرحله مجزا مطالعه انجام داده شد، به‌طوری که در مرحله اول به‌منظور به‌حداکثر رساندن دز به‌جا گذاشته پروتون در تومور، از تزریق بورن‌کپتات‌سدیم (BSH) حاوی بورن -۱۱ در حضور تابش باریکه پروتونی استفاده شد و در مرحله دوم نسبت به مرحله قبل تزریق نانوذرات طلا به‌جای تزریق بورن با همان مقدار تزریق قبل، در کنار تابش باریکه پروتونی به فانتوم شبیه‌سازی شده تومور مورد بررسی قرار گرفت. هم‌چنین، براساس تزریق غلظت‌های مختلف محلول بورن کپتات سدیم حاوی بورن-۱۱ به فانتوم‌ سینه، با استفاده از کد مونت‌کارلوی Geant4/Gate7، تعداد ذرات آلفای گسیلی ناشی از واکنش ‌ 11Bp,α 8Be  برآورد شد. در اثر انجام واکنش بهمنی آلفا پروتون - آلفا میزان ذرات آلفای تولیدی در اثر واکنش p+ 16O→α+ 13N  بیش از ذرات آلفای تولیدی ناشی از واکنش 11B+p→3α+8.7 MeV  به‌دست آمد. یافته‌های شبیه‌سازی‌ها نشان می‌دهند که محل قله براگ در داخل تومور با افزایش انرژی به اعماق بالاتر تغییر می‌کند. هم‌چنین با تزریق نانوذرات طلا در مقادیر مختلف ۲۵، ۵۰ و ۷۵ میلی‌گرم در میلی‌لیتر با تابش همزمان پرتوی پروتونی، میزان دز جذبی تا ۷۵/۱ درصد نسبت به حالت دز جذبی ناشی از تزریق محلول بورن‌کپتات‌سدیم حاوی بورن-۱۱ با همان مقادیرافزایش می‌یابد. به‌عبارت دیگر نتایج این مطالعه، توانایی نانوذرات طلا در افزایش اثربخشی درمان با افزایش دز جذبی در تومورهای سینه با استفاده از پروتون‌درمانی را تأیید می‌کندGold Nano Particle
 

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the effect of gold nanoparticles and boron injection in the treatment of breast cancer proton therapy with the code Gate7 / Geant4

نویسندگان [English]

  • elham ariyabod 1
  • seyde nasrin hosseinimotlagh 2
  • saeed mohammadi 1
1
2
چکیده [English]

Radiation therapy, the most common and successful treatment used after surgery, plays an important role in the treatment of cancer. In proton therapy, the tumor is irradiated by proton beam. To increase the treatment efficacy of breast tumors, gold nanoparticles (GNP) and boron-sodium boron (BSH) solution containing boron-11 can be injected separately into the tumor and then irradiated with proton beam. In this study, using Geant4 / Gate7 simulation, confirming the increase in the dose reached the breast tumor tissue in proton therapy was performed through two separate stages, so that in the first stage, in order to maximize the received dose by protons in the tumor, injection of sodium boron captate (BSH) containing boron-11 was used in the presence of proton beam irradiation. Also, based on the injection of different concentrations of sodium boron captate solution containing boron-11 into the breast phantom, using the Monte Carlo code Geant4 / Gate7, the number of emitted alpha particles caused by the reaction  11Bp,α 8Be estimated. As a result of alpha-proton-alpha avalanche reaction, the amount of alpha particles produced by p+ 16O→α+ 13N  more than the alpha particles produced by the reaction produced due to the  11B+p→3α+8.7MeV . The findings of the simulations show that the location of the Bragg peak inside the tumor changes with increasing energy to higher depths. Also, by injecting gold nanoparticles in different amounts of 25, 50 and 75 mg / ml with simultaneous irradiation of proton beam, the absorbed dose is up to 1.75% compared to the absorbed dose due to the injection of sodium boron captate solution containing boron-11 with the same values increase. In other words, the results of this study confirm the ability of gold nanoparticles to increase the effectiveness of treatment by increasing the absorption dose in breast tumors using proton therapy.
 

کلیدواژه‌ها [English]

  • Radiation therapy
  • Gold nanoparticles
  • Dosimetry
  • Simulation
  • GATE code
[1] P. Blanchard, A. S. Garden, G. B. Gunn, D. I. Rosenthal, W. H. Morrison, M. Hernandez, J. Crutison, J. J. Lee, R. Ye, C. D. Fuller, A. S. Mohamed, K. A. Hutcheson, E. B. Holliday, N. G. Thaker, E. M. Sturgis, M. S. Kies, X. R. Zhu, R. Mohan, S. J. Frank. “Intensitymodulated proton beam therapy (impt) versus intensity-modulated photon therapy (imrt) for patients with oropharynx cancer – a case matched analysis,” Radiotherapy and Oncology, vol. 120, no. 1, pp, (2016) 48 – 55. 
[2] P. Blanchard, G. B. Gunn, A. Lin, R. L. Foote, N. Y. Lee, S. J. Frank. “Proton therapy for head and neck cancers,” Seminars in Radiation Oncology, vol. 28, no. 1, pp. (2018) 53 – 63. 
[3] R. R. Wilson. “Radiological use of fast protons,” Radiology, vol. 47, no. 5, pp. (1946) 487–491.
[4] S. Stave, M. W. Ahmed, R. H. France, S. S. Henshaw, B. Muller, B. A. Perdue, R. M. Prior, M. C. Spraker, H. R. Weller. “Understanding the 11B (p; α) α α, reaction at the 0.675 MeV resonance,” Phys. Lett. B 696, 26 (2011). 
[5] Y. Do-Kun. “Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study”, Appl. Phys. Lett. 105 (2014) 223-507.
[6] L. Giuffrida. “Prompt gamma ray diagnostics and enhanced hadron-therapy using neutron-free nuclear reactions”, AIP Advances, 6 (2016) 105-204.
[7] G. Petringa. “Study of gamma-ray emission by proton beam interaction with injected boron atoms for future medical imaging applications”, Journal of Instrumentation 12(03) (2017).
[8] M. L. E. Oliphant and L. Rutherford. “Experiments on the transmutation of elements by protons,” Proc. R. Soc. A 141, 259 (1933).
[9] S. Kim, D. K. Yoon, H. B. Shin, J. Y. Jung, M. S. Kim, J. Korean. Phys. Soc. 70, 629 (2017).
[10] D. K. Yoon, J. Y. Jung, T. S. Suh.  Appl. Phys. Lett. 105, (2014) 223-507.
[11] D. Yoon, J. Jung, H. Shin, M. Kim, H. Jang. Med. Phys. 42, (2015) 34-87.
[12] J.Y. Jung, D.K. Yoon, H. C. Lee, B. Lu, T. S. Suh. AIP Adv, 6, (2016) 95-119.
[13] W. M. Nevins and R. Swain. “The thermonuclear fusion rate coefficient for p -11B Reactions,” Nucl. Fusion 40, 865 (2000).
[14] G. L. Kulcinski and J. F. Santarius. “Nuclear fusion: Advanced fuels under debate,” Nature (London) 396, 724 (1998). 
[15] N. Rostoker, M. W. Binderbauer, H. J. Monkhorst. “Colliding beam fusion reactor,” Science 278, 1419 (1997). And V. S. Belyaev, A. P. Matafonov, V. I. Vinogradov, V. Krainov, P. Lisitsa, V. S. Roussetski, A. S. Ignatyev, G. N. Andrianov. “Observation of neutronless fusion reactions in picosecond laser plasmas,” Phys. Rev. E 72, (2005) 226-406. 
[16] C. Labaune, S. Depierreux, C. Goyon, G. Loisel, V. Yahia, J. Rafelski. “Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma,” Nat. Commun. 4 (2013). 
[17] A. Picciotto, D. Margarone, A. Velyhan, P. Bellutti, J. Krasa, A. Szydlowsky, G. Bertuccio, Y. Shi, A. Mangione, J. Prokupek, A. Malinowska, E. Krousky, J. Ullschmied, L. Laska, M. Kucharik, G. Korn. “Boron-proton nuclear-fusion enhancement induced in boron-doped silicon targets by low-contrast pulsed laser,” Physical Review X 4, 031030 (2014). 
[18] D. Margarone, A. Picciotto, A. Velyhan, J. Krasa, M. Kucharik, A. Mangione, A. Szydlowsky, A. Malinowska, G. Bertuccio, Y. Shi,M. Crivellari, J. Ullschmied, P. Bellutti, G. Korn. “Advanced scheme for high-yield laser driven nuclear reactions,” Plasma Phys. Control. Fusion 57, (7pp) (2015). 
[19] V. S. Belyaev, V. P. Krainov, A. P. Matafonov, B. V. Zagreev. “The new possibility of the fusion p + 11B chain reaction being induced by intense laser pulses,” Laser Phys. Lett. 12, 096001 (5pp) (2015). 
[20] S. Eliezer, H. Hora, G. Korn, N. Nissim, J. M. Martinez Val, “Avalanche proton-boron fusion based on elastic nuclear collisions,” Physics Of Plasmas 23, 050704 (2016). 
[21] C. Ohlandt, T. Cammash, K. G. Powell. “A design study of p-11B gas dynamic mirror fusion propulsion system,” in CP654 Space Technology and Applications International Forum, STAIF (2003), edited by M. S. El-Genk (American Institute of Physics, College Park, MD, p 490 (2003).
[22] H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K. Jungwirth, J. Ullschmied, P. Lalousis, S. Eliezer, G. H. Miley, S. Moustaizis, G. Mourou. “Fusion energy using avalanche increased boron reactions for block-ignition by ultrahigh power picosecond laser pulses,” Laser and Particle Beams 33, (2015) 607–619.
[23] L. Giuffrida, D. Margarone, G. A. P. Cirrone, A. Picciotto, G. Cuttone, G. Korn. Prompt gamma ray diagnostics and enhanced hadron-therapy using neutronfree nuclear reactions Cite, AIP Advances, (2016) 105-204. 
[24] G. A. P. Cirrone 1, L. Manti, D. Margarone4, G. Petringa, L. Giuffrida4, A. Minopoli,A. Picciotto6, G. Russo, F. Cammarata, P. Pisciotta. F. M. Perozziello, F. Romano,V. Marchese 1, G. Milluzzo, V. Scuderi, G. Cuttone1 & G. Korn4First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy effectiveness, (2018).
[25] S. Eliezer, H. Hora, G. Korn, N. Nissim, J. M. Martinez Val. “Avalanche proton-boron fusion based on elastic nuclear collisions,” Physics of Plasmas, vol. 23, no. 5, p. 050704, (2016).
[26] J. Keay, D. Ingram. “Absolute cross section for forward recoiling hydrogen with 1.0–12.5 mev 4he,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 211, no. 3, pp. (2003) 305–311.
[27] E. Hall, A. Giaccia. Radiobiology for the Radiologist. Philadelphia: Lippincott Williams & Wilkins, (2006).
[28] C. Yang, K. Bromma, C. Ciano-Oliveira, G. Zafarana, M. Prooijen. Gold Nanoparticle Mediated Combined Cancer Therapy Cancer Nanotechnology, (2018). 
[29] J. Hainfeld, F. Dilmanian, D. Slatkin, H. Smilowitz. Radiotherapy Enhancement with Gold Nanoparticles. J Pharm Pharmacol. 60 (2008) 977-985. 
[30] S. Shrestha, L. Cooper, O. Andreev, Y. Reshetnyak, M. Antosh. Gold Nanoparticles for Radiation Enhancement in Vivo. Jacobs J Radiat Oncol, 3 (2016). 
[31] J. Hainfeld, F. Dilmanian, Z. Zhong, D. Slatkin, J. Kalef-Ezra. Gold Nanoparticles Enhance the Radiation Therapy of a Murine Squamous Cell Carcinoma. Phys Med Biol. 55 (2010) 3045- 3059. 
[32] W. Rahman, R. Rashid, M. Muhammad, N. Dollah, K. Razak. Dose Enhancement Effects by Different Size of Gold Nanoparticles under Irradiation of Megavoltage Photon Beam. Med Docs Publishers Journal of Nanomedicine 7 Jurnal Sains Nuklear Malaysia, 30 (2018) 23-29. 
[33] X. Zhang, Y. Jiang, H. Jia. Shape-Dependent Radiosensitization Effect of Gold Nanostructures in Cancer Radiotherapy, Comparison of Gold Nanoparticles, Nanospikes, and Nanorods. ACS Appl Mater Interfaces, 9 (2017) 13037-13048.
[34] K. Haume, S. Rosa, S. Grellet, M. Śmiałek, Butterworth KT. Gold Nanoparticles for Cancer Radiotherapy, A Review. Cancer nanotechnology, (2016). 
[35] R. Rashid, K. Razak, M. Geso, R. Abdullah, Dollah NW Rahman. Radiobiological Characterization of the Radiosensitization Effects by Gold Nanoparticles for Megavoltage Clinical Radiotherapy Beams, BioNanoScience, (2018). 
[36] S. Her, D. Jaffray, C. Allen. Gold Nanoparticles for Applications in Cancer Radiotherapy, Mechanisms and Recent Advancements. Advanced drug delivery reviews, 109 (2017) 84-101. 
[37] G. A. P. Cirrone, L. Manti, D. Margarone, G. Petringa, L. Giufrida, A. Minopoli2, A. Picciotto6, G. Russo, F. Cammarata, P. Pisciotta, F. M. Perozziello, F. Romano, V. Marchese, G. Milluzzo, V. Scuderi, G. Cuttone , G. Korn. First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy efectiveness 26 (2017). 
[38] S. Agostinelli. “Geant4-a simulation toolkit”, Nucl-Instrum.Meth. A 506 (2003) 250-303. 
[39] Y.Do-Kun, J. Joo-Young, S.Tae, S. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study, Appl. Phys. Lett. 105, 223507 (2014).
[40] L. Giufrida, D. Margarone, D. Cirrone, G.A.P. A. Picciotto. Prompt gamma ray diagnostics and enhanced hadron-therapy using neutron-free nuclear reactions, arXiv: 1608.06778 AIP Advances, 6 (2016) 105-204. 
[41] H. Paganetti. Relative biological efectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer, Phys. Med. Biol. 59, (2014) 419–472. 
[42] H.Th. Wolterbeek, J.L. Kloosterman, D. Lathouwers, A.G. Denkova. The Feasibility of Proton Boron Capture Therapy (2019).
[43] C. Ohlandt, T. Cammash, and K. G. Powell. “A design study of p-11B gas dynamic mirror fusion propulsion system,” in CP654 Space Technology and Applications International Forum, STAIF (2003), edited by M. S. El-Genk American Institute of Physics, College Park, MD, 490 (2003).