[1] U. Schneider and R. Hälg. The impact of neutrons in clinical proton therapy. Frontiers in Oncology, (2015). 5, 235.
[4] A. Pérez‐Andújar, R. Zhang and W. Newhauser. Monte Carlo and analytical model predictions of leakage neutron exposures from passively scattered proton therapy. Medical physics, 40(12) (2013) 121714.
[5] Y. Zheng, W. Newhauser, J. Fontenot, P. Taddei and R. Mohan. Monte Carlo study of neutron dose equivalent during passive scattering proton therapy. Physics in Medicine & Biology, 52(15) (2007) 4481.
[6] F. Biltekin, M. Yeginer and G. Ozyigit. Investigating in-field and out-of-field neutron contamination in high-energy medical linear accelerators based on the treatment factors of field size, depth, beam modifiers and beam type. Physica Medica, 31(5) (2015) 517-523.
[7] A.B. Chilton, J.K. Shultis and R.E. Faw. Principles of radiation shielding. (1984).
[8] W.D. Newhauser and R. Zhang. The physics of proton therapy. Physics in Medicine & Biology, 60(8) (2015) R155.
[9] P.J. Binns and J.H. Hough. Secondary dose exposures during 200 MeV proton therapy. Radiation protection dosimetry, 70(1-4) (1997) 441-444.
[10] S. Agosteo, C. Birattari, M. Caravaggio, M. Silari and G. Tosi, G. Secondary neutron and photon dose in proton therapy. Radiotherapy and oncology, 48(3) (1998) 293-305.
[11] G.F. Garcia-Fernandez, E. Gallego, J.M. Gomez-Ros, H.R. Vega-Carrillo, R. Garcia-Baonza, L.E. Cevallos-Robalino and K.A. Guzman-Garcia. Neutron dosimetry and shielding verification in commissioning of Compact Proton Therapy Centers (CPTC) using MCNP6. 2 Monte Carlo code. Applied Radiation and Isotopes, 169(2021) 109279.
[12] N. Mojżeszek, J. Farah, M. Kłodowska, O. Ploc, L. Stolarczyk, M.P.R. Waligórski and P. Olko. Measurement of stray neutron doses inside the treatment room from a proton pencil beam scanning system. Physica Medica, 34(2017) 80-84.
[13] F. Trompier, S. Delacroix, I. Vabre, F. Joussard, F. and J. Proust. Secondary exposure for 73 and 200 MeV proton therapy. Radiation protection dosimetry, 125(1-4) (2007) 349-354.
[14] J. Lillhök, P. Beck, J.F. Bottollier-Depois, M. Latocha, L. Lindborg, H. Roos and F. Wissmann. A comparison of ambient dose equivalent meters and dose calculations at constant flight conditions. Radiation measurements, 42(3) (2007) 323-333.
[15] J. Farah, M. De Saint-Hubert, N. Mojżeszek, S. Chiriotti, M. Gryzinski, O. Ploc, F. Trompier, K. Turek, F. Vanhavere and P. Olko. Performance tests and comparison of microdosimetric measurements with four tissue-equivalent proportional counters in scanning proton therapy. Radiation Measurements, 96(2017) 42-52.
[16] J. Farah, V. Mares, M. Romero‐Expósito, S. Trinkl, C. Domingo, V. Dufek, M. Klodowska and R.M. Harrison. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems. Medical physics, 42(5) (2015) 2572-2584.
[17] D. Strulab, G. Santin, D. Lazaro, V. Breton and C. Morel. GATE (Geant4 Application for Tomographic Emission): a PET/SPECT general-purpose simulation platform. Nuclear Physics B-Proceedings Supplements, 125(2003) 75-79.
[18] B. Burgkhardt, G. Fieg, A. Klett, A. Plewnia and B.R.L. Siebert. The neutron fluence and H*(10) response of the new LB 6411 rem counter. Radiation Protection Dosimetry, 70(1-4) (1997) 361-364.
[19] C.A.O Jing, J.I.A.N.G. Xiaofei, J.I.A.N.G Chunyu, C. Hongrui and Y. Zejie. Calculation of response function for bonner sphere spectrometer based on Geant4. Plasma Science and Technology, 17(1) (2015) 80.
[20] D.M.H. Cunningham and K. Bontcheva. Text Processing with GATE (Version 6) (pp. 8-1). University of Sheffield D. (2011).
[21] R. Serber. Nuclear reactions at high energies. Physical Review, 72(11) (1947) 1114.
[22] C. Schneider, W. Newhauser and J. Farah. An analytical model of leakage neutron equivalent dose for passively-scattered proton radiotherapy and validation with measurements. Cancers, 7(2) (2015) 795-810.