[1] R.R. Wilson. Radiological use of fast protons, Radiology, 47 (1946) 487-491.
[3] D. Schardt, T. Elsaasser and D. Schulz. Heavy-ion tumor therapy:physical and radiobiological Benefits, Rev. Mod. Phys. 82 (2010) 383–425.
[4] O. Sokol, E. Scifoni, W. Tinganelli, W. Kraft-Weyrather, J. Wiedemann, A. Maier, D. Boscolo, T. Friedrich, S. Brons, M. Durante and M. Kramer. Oxygen beams for therapy: advanced biological treatment planning and experimental verification, Phys. Med. Biol. 62 (2017) 7798–7813.
[5] T. Tessonnier, A. Mairani, W. Chen, P. Sala, F. Cerutti, A. Ferrari, T. Haberer, J. Debus and K. Parodi. Proton and helium ion radiotherapy for meningioma tumors: a Monte Carlo-based treatment planning comparison, Radiation Oncology, 13(2) (2018).
[6] R. Bagheri, A.K. Moghaddam, B. Azadbakht, M.R. Akbari and S.P. Shirmardi. Determination of water equivalent ratio for some dosimetric materials in proton therapy using MCNPX simulation tool, Nuclear Science and Techniques, 30(31) (2019).
[7] W. Newhauser, J. Fontenot, Y. Zheng, J. Polf, U. Titt, N. Koch, X. Zhang and R. Mohan. Monte Carlo simulations for configuring and testing an analytical proton dose-calculation algorithm, Physics in Medicine & Biology, 52 (2007) 4569.
[8] R. Zhang, P.J. Taddei, M.M. Fitzek and W.D. Newhauser. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions, Physics in Medicine & Biology, 55 (2010) 2481.
[9] M.R. Akbari, H. Yousefnia and E. Mirrezaei. Calculation of water equivalent ratio of several dosimetric materials in proton therapy using FLUKA code and SRIM program, Applied Radiation and Isotopes, 90 (2014) 89-93.
[10] H. Safigholi and W.Y. Song. Calculation of water equivalent ratios for various materials at proton energies ranging 10–500 MeV using MCNP, FLUKA, and GEANT4 Monte Carlo codes, Physics in Medicine & Biology, 63 (2018) 155010.
[11] M. Berger, M. Inokuti, H. Andersen and H. Bichsel. Stopping powers and ranges for protons and alpha particles ICRU Report 49 (1993).