[1] D. C. W. Sanderson, A. J. Cresswell & D. C. White (2008) The effect of flight line spacing on radioactivity inventory and spatial feature characteristics of airborne gamma‐ray spectrometry data, International Journal of Remote Sensing, 29:1, 31-46, : 10.1080/01431160701268970
[2] D. Srinivas, V. Ramesh Babu, I. Patra, Shailesh Tripathi, M.S. Ramayya, A.K. Chaturvedi, Assessment of background gamma radiation levels using airborne gamma ray spectrometer data over uranium deposits, Cuddapah Basin, India – A comparative study of dose rates estimated by AGRS and PGRS, Journal of Environmental Radioactivity, Volume 167, 2017, Pages 1-12.
[3] Mohsen Rezaei, Mansour Ashoor, Leila Sarkhosh, Numerical evaluation of gamma radiation monitoring, Nuclear Engineering and Technology, Volume 51, Issue 3, 2019, Pages 807-817, ISSN 1738-5733, https://doi.org/10.1016/j.net.2018.12.020.
[4] Sanderson, D. , Allyson, J.D., Tyler, A.N., Ni Riain, S. and Murphy, S. (1993) An Airborne Gamma Ray Survey of Parts of SW Scotland in February 1993. Final Report. Project Report. Scottish Universities Research and Reactor Centre, Glasgow, UK.
[5] Shengqing Xiong, Nanping Wang, Zhengguo Fan, Xingming Chu, Qifan Wu, Shaoying Pei, Jianhua Wan & Lihui Zeng (2012) Mapping the terrestrial air-absorbed gamma dose rate based on the data of airborne gamma-ray spectrometry in southern cities of China, Journal of Nuclear Science and Technology, 49:1, 61-70, DOI: 10.1080/18811248.2011.636550
[6] Martin, P., Tims, S., McGill, A. et al., “Use of Airborne γ-Ray Spectrometry for Environmental Assessment of the Rehabilitated Nabarlek Uranium Mine, Australia,” Environmental Monitoring and Assessment, Volume 115, Issue 1–3, pp 531–554., 2006.
[7] D. Beamish, “Environmental radioactivity in the UK: the airborne geophysical view of dose rate estimates,” J Environ Radioact. 2014 Dec; 138:249-63. doi: 10.1016/j.jenvrad.2014.08.025.
[8] Katti, V.J. & Dattanarayana, T.A. & Sreehari, R. & Kak, S.N.. (1997). Radiation monitoring in the environs of nuclear power plants in india using airborne gamma-ray spectrometry. 10. 107-118.
[9] M, Sowmya & Senthilkumar, Bojarajan & Seshan, Ranga & Govindasamy, Hariharan & Ramachandran, Purvaja & Ramkumar, S & Ramachandran, Ramesh. (2010). Natural radioactivity and associated dose rates in soil samples from Kalpakkam, South India. Radiation protection dosimetry. 141. 239-47. 10.1093/rpd/ncq169.
[10] N. Karunakara, I. Yashodhara, K. Sudeep Kumara, R.M. Tripathi, S.N. Menon, S. Kadam, M.P. Chougaonkar, Assessment of ambient gamma dose rate around a prospective uranium mining area of South India – A comparative study of dose by direct methods and soil radioactivity measurements, Results in Physics, Volume 4, 2014, Pages 20-27, ISSN 2211-3797, https://doi.org/10.1016/j.rinp.2014.02.001.
[11] UNSCEAR, “United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and effects of ionizing radiation. Rep. General Assembly.,” Sources, United Nation, New York, 654., 2000.
[12] Sinha, R.M., Shrivastava, V.K., Sarma, G.V.G., & Parthasarathy, T.N. (1995). Geological favourability for unconformity-related uranium deposits in northern parts of the Cuddapah basin: evidences from Lambapur uranium occurrence, Andhra Pradesh, India. Exploration and Research for Atomic Minerals, 111-126.
[13] Verma, Mohan. (2009). Srisailam sub-basin, an uranium province of unconformity-related deposits in Andhra Pradesh – case study of Chitrial uranium exploration, Nalgonda District M. B. Verma1,*, P. B. Maithani2, A. Chaki2, P. Nageshwar Rao2 and Prakher Kumar3. Current science. 96. 588-591.
[14] Jeyagopal, A.V., Kumar, Prakhar, & Sinha, R.M. (Dec 1996). Uranium mineralization in the Palnad sub-basin, Cuddapah basin, Andhra Pradesh, India. Current Science (Bangalore), 71(12), 957-959.
[15] P. R. J. Parihar, “Cuddapah Basin e A Uranium province,” Explor. Atomic Minerals 22, pp. 1-19, 2012.
[16] Rajaraman, H. & Veldi, Ramesh Babu & Dandele, P. & Chavan, S. & Achar, K. & Babu, P V. (2011). Using VLF-EM to delineate a fracture zone in basement granites for uranium exploration. The Leading Edge. 30. 1158-1161. 10.1190/1.3657076.
[17] Minty, B.R.S., Luyendyk, A.P.J., & Brodie, R.C. (1997). Calibration and data processing for airborne gamma-ray spectrometry. AGSO Journal of Australian Geology and Geophysics, 17(2), 51-62.
[18] Rezaei M, Ashoor M, Sarkhosh L. Airborne gamma ray spectrometry improvement using autoregressive integrated moving average model. IJRSM. 2018; 6 (2) :33-44
[19] Borhani M., Ghassemian H. (2014) Novel Spatial Approaches for Classification of Hyperspectral Remotely Sensed Landscapes. In: Movaghar A., Jamzad M., Asadi H. (eds) Artificial Intelligence and Signal Processing. AISP 2013. Communications in Computer and Information Science, vol 427. Springer, Cham.
[20] J. G. R. Hovgaard, “Reducing statistical noise in airborne gamma-ray data through spectral component analysis. In: Gubins, A.G. (Ed.), Proceedings of Exploration97,” Fourth Decennial Conference on Mineral Exploration, p. pp. 753e764., 1997.
[21] Borhani M., Ghassemian H. (2014) Kernel Grouped Multivariate Discriminant Analysis for Hyperspectral Image Classification. In: Movaghar A., Jamzad M., Asadi H. (eds) Artificial Intelligence and Signal Processing. AISP 2013. Communications in Computer and Information Science, vol 427. Springer, Cham
[22] IAEA, “Airborne Gamma Ray Spectrometry Surveying,,” International Atomic Energy Agency p. p. 96., 1991. Technical Reports Series No. 323. Austria, Vienna,,
[23] M. Borhani and H. Ghassemian, "Kernel Multivariate Spectral–Spatial Analysis of Hyperspectral Data," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 6, pp. 2418-2426, June 2015, doi: 10.1109/JSTARS.2015.2399936
[24] Mamdani, E. H.,(1976), “Advances in the linguistic synthesis of fuzzy controllers,” Int. J. Man-Mach. Stud., vol. 8, pp. 669–678.