[1] C.M.Ch. Ma, T. Lomax, W.R. Hendee. Proton and carbon ion therapy. Taylor and Francis Group, UK, (2013).
[2] M. Riboldi, M. Orecchia, G. Baroni. Real-time tumor tracking in particle therapy: technological developments and future perspectives. Lancet. Oncol. 13 (2012) 383–391.
[3] M. Moteabbed, J. Schuemann, H. Paganetti. Dosimetric feasibility of real-time MRI-guided proton therapy. Med. Phys. 41 (2014) 1-11.
[4] F.M. Khan, J.P. Gibbons. Khan's the physics of radiation therapy, Lippincott Williams and Wilkins, Philadelphia, (2014).
[5] L.A. Dawson, D.A. Jaffray. Advances in image-guided radiation therapy. J. Clin. Oncol. 25 (2007) 938–946.
[6] L. Henke, J. Contreras, O. Green, B. Cai, H. Kim, M. Roach, J. Olsen, B. Fischer-Valuck, D. Mullen, R. Kashani. Magnetic Resonance Image-Guided Radiotherapy (MRIgRT): A 4.5-Year Clinical Experience. Clin. Oncol. In Press, Corrected Proof, Available online 7 September 2018.
[7] Jäkel, O. SP-0546: MR-LINAC technological advances and potential usability in clinical setting. Radiother. Oncol. 127 (2018) S290-S291.
[8] B. W. Raaymakers et al. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys. Med. Biol. 62 (2017) L41-L50.
[9] S. Mutic, J.F. Dempsey. The ViewRay System: Magnetic Resonance–Guided and Controlled Radiotherapy, Seminars in Radiation Oncology, 24 (2014) 196-199.
[10] J. Lesniak, J. Tokuda, R. Kikinis, C. Burghart, N. Hata, A device guidance method for organ motion compensation in MRI-guided therapy. Phys. Med. Biol. 52 (2007), 6427–6438.
[11] M. A. Zahra, K. G. Hollingsworth , E. Sala E, D. J. Lomas, L. T. Tan. Dynamic contrast-enhanced MRI as a predictor of tumor response to radiotherapy. Lancet Oncology, 8 (2007) 63–74.
[12] A. Søvik, E. Malinen, D. R. Olsen, Strategies for biologic image-guided dose escalation: a review. Int. J. Radiat. Oncol. 73 (2009) 650–658.
[13] R. A. Cooper , B. M. Carrington, J. A. Loncaster, S. M. Todd, S. E. Davidson, J. P. Logue, A. D. Luthra, A. P. Jones, I.Stratford, R. D. Hunter, C. M. West. Tumour oxygenation levels correlate with dynamic contrast-enhanced magnetic resonance imaging parameters in carcinoma of the cervix. Radiotherapy and Oncology, 57 (2000), 53–59.
[14] C. Bert, N. Saito, A. Schmidt, N. Chaudhri, D. Schardt, E. Rietzel. Target motion tracking with a scanned particle beam. Med. Phys. 34 (2007), 4768–4771.
[15] S. van de Water, R. Kreuger, S. Zenklusen, E. Hug, A. J. Lomax. Tumour tracking with scanned proton beams: Assessing the accuracy and practicalities. Phys. Med. Biol. 54 (2009) 6549–6563.
[16] N. Saito, C. Bert, N. Chaudhri, A. Gemmel, D. Schardt, E. Rietzel. Speed and accuracy of a beam tracking system for treatment of moving targets with scanned ion beams. Phys. Med. Biol. 54 (2009) 4849–4862.
[17] S. B. Jiang, Technical aspects of image-guided respiration-gated radiation therapy. Med. Dosim. 31 (2006) 141–151.
[18] S.P.M. Crijns, J.G.M. Kok, J.J.W. Lagendijk, B.W. Raaymakers. Towards MRI-guided linear accelerator control: Gating on an MRI accelerator. Phys. Med. Biol. 56 (2011) 4815–4825.
[19] B.W. Raaymakers, A.J.E. Raaijmakers, J. J. W. Lagendijk. Feasibility of MRI guided proton therapy: magnetic field dose effects. Phys. Med. Biol. 53 (2008) 5615–5622.
[20] R. Wolf, T. Bortfeld, An analytical solution to proton Bragg peak deflection in a magnetic field. Phys. Med. Biol. 57 (2012) 329–337.
[21] B.M. Oborn, S. Dowdell, P.E. Metcalfe, S. Crozier, R. Mohan, P.J. Keall. Proton beam deflection in MRI fields: Implications for MRI-guided proton therapy. Med. Phys. 42 (2015) 2113-2124.
[22] J.T. Bushberg, J.A. Seibert, E.M.J. Leidholdt, J.M. Boone. The essential physics of medical imaging. Lippincott Williams & Wilkins, Philadelphia, (2012).
[23] M. Sadiku. Elements of Electromagnetics, Oxford University, Oxford, (2014).
[24] D. Halliday, R. Resnick. Fundamentals of physics. Wiley, New jersey, (2004).
[25]A. B. Milby. Carbon vs. proton for innovative applications of particle beam therapy. The Abramson Cancer Center of the University of Pennsylvania,http://www.oncolink.org/conferences/article.cfm?id=6696, Retrieved: July 2018, Last updated: May 2012 .
[26] Particle therapy facilities in operation, http://www.ptcog.ch, Retrieved: July 2018, Last updated: April 2016.
[27] Particle therapy facilities under construction, http://www.ptcog.ch, Retrieved: July 2018, Last updated: April 2016.
[28] D. Schulz-Ertner, O. Jäkel, W. Schlegel. Radiation therapy with charged particles. Semin. Radiat. Oncol. 16 (2006 ) 249-259.
[29] O. Jakel. Medical physics aspects of particle therapy. Radiat. Prot. Dosim. 137 (2009) 156-166.
[30] T. Nakano, Y. Suzuki , T. Ohno, S. Kato , M. Suzuki, S. Morita, S. Sato, K. Oka, H. Tsujii. Carbon beam therapy overcomes the radiation resistance of uterine cervical cancer originating from hypoxia. Clin. Cancer. Res. 12 (2006) 2185-2190.
[31] H. Fuchs, P. Moser, M. Gröschl, D. Georg. Magnetic field effects on particle beams and their implications for dose calculation in MR‐guided particle therapy. Med. Phys. 44 (2017) 1149-1156.
[32] W. Shao, X. Tang, Y. Bai, D. Shu, C. Geng, C. Gong, F. Guan. Investigation of the dose perturbation effect for therapeutic beams with the presence of a 1.5 T transverse magnetic field in magnetic resonance imaging-guided radiotherapy. J. Canc. Res. Ther. 14 (2018) 184-195.
[33] F. Sommerer, K. Parodi, A. Ferrari, K. Poljanc, W. Enghardt, H. Aiginger. Investigating the accuracy of the FLUKA code for transport of therapeutic ion beams in matter. Phys. Med. Biol. 51 (2006) 4385-4398.
[34] K. Parodi, A. Mairani, S. Brons, B.-G. Hasch, F. Sommerer, J. Naumann, O. Jäkel, T. Haberer, J. Debus, Monte Carlo simulations to support start-up and treatment planning of scanned proton and carbon ion therapy at a synchrotron-based facility. Phys. Med. Biol. 57 (2012) 3759-3784.
[35] A. Ferrari, P. R. Sala, A. Fasso, J. Ranft. FLUKA: A multi-particle transport code. Cern, Switzerland, (2011).
[36] B.M. Oborn, S. Dowdell, P.E. Metcalfe, S. Crozier, R. Mohan, P. J. Keall. Future of medical physics: Real‐time MRI‐guided proton therapy. Med. Phys. 44 (2017) e77-e90.