[1] L. Soto, New trends and future perspectives on plasma focus research, Plasma Physics and Controlled Fusion 47 (2005) A361.
[2] A. Costley, J. Hugill, P. Buxton, On the power and size of tokamak fusion pilot plants and reactors, Nuclear Fusion 55 (2015) 033001.
[3] V. Gribkov, Current and perspective applications of dense plasma focus devices, AIP Conference Proceedings, AIP, (2008), 51-64.
[4] V. Krauz, Progress in plasma focus research and applications, Plasma physics and controlled fusion 48 (2006) B221.
[5] C. Moreno, M. Vénere, R. Barbuzza, M. Del Fresno, R. Ramos, H. Bruzzone, F.P. González, A. Clausse, Industrial applications of plasma focus radiation, Brazilian Journal of Physics 32 (2002) 20-25.
[6] P.R. Renne, K.B. Knight, S. Nomade, K.-N. Leung, T.-P. Lou, Application of deuteron–deuteron (D–D) fusion neutrons to 40 Ar/39 Ar geochronology, Applied Radiation and Isotopes 62 (2005) 25-32.
[7] T. Hayashi, K. Tobita, Y. Nakamori, S. Orimo, Advanced neutron shielding material using zirconium borohydride and zirconium hydride, Journal of Nuclear Materials 386–388 (2009) 119-121.
[8] T. Hayashi, K. Tobita, S. Nishio, K. Ikeda, Y. Nakamori, S. Orimo, Neutronics assessment of advanced shield materials using metal hydride and borohydride for fusion reactors, Fusion Engineering and Design 81 (2006) 1285-1290.
[9] H. Fritzsche, J. Huot, D. Fruchart, Neutron Scattering and Other Nuclear Techniques for Hydrogen in Materials, Springer (2016).
[10] D. Picton, D. Ross, A. Taylor, Optimisation studies for a moderator on a pulsed neutron source, Journal of Physics D: Applied Physics 15 (1982) 2369.
[11] W.M. Mueller, J.P. Blackledge, G.G. Libowitz, Metal Hydrides, Academic Press (1968).
[12] M.T. Simnad, Metal Hydrides, Inorganic Reactions and Methods, John Wiley & Sons, Inc. (2007), 369-378.
[13] IAEA-TECDOC-1223, Current status of neutron capture therapy, (2001).