[1] The National Cancer Institutes (NCI) (2018). https://www.cancer.gov/ (accessed August 21, 2018).
[2] L. Tabár , B. Vitak, TH-H. Chen, AM-F. Yen, A. Cohen, T. Tot, et al. Swedish Two-County Trial: Impact of Mammographic Screening on Breast Cancer Mortality during 3 Decades. Radiology .260 (2011) 658–663.
[3] New Zealand National Screening Unit Website (2018). https://www.health.govt.nz/nz-health-statistics (accessed August 21, 2018).
[4] DR. Dance, CL. Skinner, GA. Carlsson. Breast dosimetry. Appl Radiat Isot .50 (1999) 185–203.
[5] DR. Dance. Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose. Phys Med Biol .35 (1990) 1211–1219.
[6] WT. Sobol, X. Wu. Parametrization of mammography normalized average glandular dose tables. Med Phys. 24 (1997) 547–554.
[7] K. Nigapruke, P. Puwanich, N. Phaisangitisakul, W. Youngdee. Monte Carlo simulation of average glandular dose and an investigation of influencing factors. J Radiat Res. 51 (2010) 441–448.
[8] KO. Ko, SH. Park, JK. Lee. Assessment of patient close in mammography using Monte Carlo simulation. Nucl Sci Technol. 41 (2004) 214–218.
[9] A. Mohammadi, R. Faghihi, S. Mehdizadeh, K. Hadad. Total absorbed dose of critical organs in mammography, assessment and comparison of ... Biomed Tech. 50 (2005) 393–394.
[10] D. Čceke, S. Kunosic, M. Kopric, L. Lincender. Using Neural Network Algorithms in Prediction of Mean Glandular Dose Based on the Measurable Parameters in Mammography. Acta Inform Medica. 17 (2009) 194–197.
[11] P. Mohammadyari, R. Faghihi, MA. Mosleh-Shirazi, M. Lotfi, MR. Hematiyan,C. Koontz, et al. Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters. Phys Med Biol. 60 (2015) 9185–9202.
[12] R. Highnam. Patient-Specific Radiation Dose Estimation in Breast Cancer Screening Keeping Patients Safe and Informed (2018). https://www.volparasolutions.com/assets/Uploads/VolparaDose-White-Paper.pdf (accessed August 21, 2018).
[13] E. Ariga, S. Ito, S. Deji, T. Saze T. Determination of half value layers of X-ray equipment using computed radiography imaging plates. Phys Medica. 28 (2012) 71–75.
[14] SS. Haykin. Neural networks : a comprehensive foundation. Prentice Hall. (1998).
[15] A. Asgharzadeh, MR. Deevband, M. Ashtiyani. Neutron spectrum unfolding using radial basis function neural networks. Appl Radiat Isot. 129 (2017) 35–41.
[16] JA. Anderson. An introduction to neural networks. MIT Press. (1995).
[17] MT. Hagan, MB. Menhaj. Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Networks. 5 (1994) 989–993.
[18] MT. Hagan, HB. Demuth, MH. Beale, O.De Jesús. Neural network design. (2014).
[19] MS. Iyer, RR. Rhinehart. A method to determine the required number of neural-network training repetitions. IEEE Trans Neural Networks. 10 (1999) 427–432.
[20] K. Fukumizu, S. Amari. Local minima and plateaus in multilayer neural networks. Ninth Int Conf Artif Neural Networks 1999 ICANN 99 Conf Publ No .470. 2 (1999) 597–602.
[21] L. Hamm, BW. Brorsen, MT. Hagan. Comparison of Stochastic Global Optimization Methods to Estimate Neural Network Weights. Neural Process Lett. 26 (2007) 145–158.