[1] T.S.Lawrence, R.K.T. Haken, A. Giacci Principles of Radiation Oncology. Philadelphia, Lippincott Williams, (2008).
[2] G. Kraft, Tumor therapy with heavy charged particles. Particle and Nuclear Physics, 45(2), (2000) 473-544.
[3] C.M. Charlie Ma, T. Lomax. Proton and Carbon Ion Therapy. Boca Raton, (2013).
[4] H.L. Andrews. Radiation Biophysics. Prentice Hall, (1961).
[5] J. Allison, Recent developments in Geant4. Nuclear Instruments and Methods in Physics Research Section A, 835, (2016) 186-225.
[6] J.Allison, Geant4 Developments and Applications. IEEE Transactions on Nuclear Science. 53,(2006) 270-278.
[7] S. Agostinelli, Geant4 a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Volume 506 ( 3), (2003) 250-303.
[8] Z.Francis,S. Incerti, V. Ivanchenko, C.Champion, M. Karamitros, M. Bernal, E.B Ziad. Monte Carlo simulation of energy-deposit clustering for ions of the same LET in liquid water. Physics in medicine and biology. 57. (2011) 209-24.
[9] M. Dingfelder, D. Hantke, M. Inokuti, H.G. Paretzke, Electron inelastic-scattering cross sections in liquid water, Radiation Physics and Chemistry, 53 ( 1) ,(1999) 1-18.
[10] P. Bernhardt, W. Friedland, P. Jacob, H.G. Paretzke. Modeling of ultrasoft X-ray induced DNA damage using structured higher order DNA targets,International Journal of Mass Spectrometry, 223–224,(2003) 579-597.
[11] S. Incerti, A. Ivanchenko, M. Karamitros, A. Mantero, P. Moretto, H. N. Tran, B. Mascialino, C. Champion, V. N. Ivanchenko, M. A. Bernal, Z. Francis, C. Villagrasa, G. Baldacchino, P. Guèye, R. Capra, P. Nieminen, C.Zacharatou. Comparison of GEANT4 very low energy cross section models with experimental data in water Medical Physics, 37 (9), (2010) 4692-4708.
[12] W. Friedland, M. Dingfelder, P. Kundrát, P. Jacob, Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC, Mut. Res, 711 (2011) 28-40.
[13] H. Nikjoo, P. O’Neill, D.T. Goodhead, M. Terrissol, Computational modelling of low- energy electron-induced DNA damage by early physical and chemical events, Int. J. Radiat. Biol, 71 (1997) 467-483.
[14] M. Pinak, A. Ito, Energy deposition in structural parts of DNA by monoenergetic electrons, J. Radiat. Res, 34 (1993) 221-234.
[15] M.A. Bernal, C.E. Almeida, C. Sampaio, S. Incerti, C. Champion, P. Nieminen, The invariance of the total direct DNA strand break yield, Med. Phys, 38 (2011) 4147-4153.
[16] A.G.W. Leslie, S. Arnott, R. Chandrasekaran, R.L. Ratliff, Polymorphism of DNA double helices. Journal of Molecular Biology,143(1), (1980) 49-72.
[17] E. Delage, Q.T. Pham, M. Karamitros, H. Payno, V. Stepan, S. Incerti, L. Maigne, Y. Perrot, PDB4DNA: Implementation of DNA geometry from the Protein Data Bank (PDB) description for Geant4-DNA Monte-Carlo simulations. Computer Physics Communications, 192,(2015) 282-288.
[18] P.Pater, G. Bäckstöm, F. Villegas, A. Ahnesjö, A.S. Enger, J. Seuntjens, I. El Naqa. Proton and light ion RBE for the induction of direct DNA double strand breaks. Medical Physics,43 (5),(2016) 2131-2140.
[19] M. A. Bernal, C. E. deAlmeida, S. Incerti, C.Champion, V. Ivanchenko, Z. Francis. The Influence of DNA Configuration on the Direct Strand Break Yield. Computational and Mathematical Methods in Medicine. (2015).
[20] H. Nikjoo, P. O’Neill, M. Terrissol, D.T. Goodhead, Quantitative modelling of DNA damage using Monte Carlo track structure method, Rad. Environ. Bioph, 38 (1999) 31-38.