[1] A. Brahme. Recent Advances in Light Ion Radiation Therapy, Int. J. Radiation Oncology Biol. Phys., 58 (2004) 603–616.
[2] G. Sgouros. Alpha-particles for targeted therapy, Advanced Drug Delivery Reviews, 60 (2008) 1402-1406.
[3] D.T. Goodhead. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA, Int. J. Radiat. Biol., 65 (1994) 7–17.
[4] H. Nikjoo, D. Emfietzoglou, T. Liamsuwan, R. Taleei, D. Liljequist and S. Uehara. Radiation track, DNA damage and response-a review, Rep. Prog. Phys., 79 (2016) 116601.
[5] H. Nikjoo, P. O’Neill, W.E. Wilson and D.T. Goodhead. Computational Approach for Determining the Spectrum of DNA Damage Induced by Ionizing Radiation, Radiation Research, 156 (2001) 577–583.
[6] W. Friedland, E. Schmitt, P. Kundrát, M. Dingfelder, G. Baiocco, S. Barbieri and A. Ottolenghi. Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy relevant energies down to stopping, Sci. Rep., 7 (2017) 45161.
[7] S. Incerti, A. Ivanchenko, M. Karamitros, A. Mantero, P. Moretto, H.N. Tran, B. Mascialino, C. Champion, V.N. Ivanchenko, M. A. Bernal, Z. Francis, C. Villagrasa, G. Baldacchino, P. Guèye, R. Capra, P. Nieminen and C. Zacharatou. Comparison of Geant4 very low energy cross section models with experimental data in water, Medical Physics, 37 (2010) 4692–4708.
[8] O. Sartor, B. Maalouf, C. Hauck and R. Macklis. Targeted use of Alpha Particles: Current Status in Cancer Therapeutics, J. Nucl. Med. Radiat. Ther., 3 (2012) 136.
[9] M. Mokari, M.H. Alamatsaz, H. Moeini and R. Taleei. A Simulation Approach for Determining the Spectrum of DNA Damage Induced by Protons, Phys. Med. Biol., 63 (2018) 175003.
[10] L. De la Fuente Rosales, S. Incerti, Z. Francisc and M. A. Bernal. Accounting for radiation-induced indirect damage on DNA with the Geant4-DNA code, Phys. Med., 51 (2018) 108-116.
[11] H. Nikjoo, P. O’Neill, D.T. Goodhead and M. Terrisol. Computational Modelling of Low-energy Electron-induced DNA, Int. J. Radiat. Biol., 71 (1997) 467-483.
[12] S. Meylan, U. Vimont, S. Incerti, I. Clairand and C. Villagrasa. Geant4-DNA simulations using complex DNA geometries generated by the DnaFabric tool, Computer Physics Communications, 204 (2016) 159–169.
[13] A. Kellerer. Fandamental of microdosimetry. in The Dosimetry of Ionizing Radiation, K.R. Kase, B.E. Bjarngaard and F. H. Attix, Eds., Academic Press, 77-162 (1975).
[14] S. Kandaiya, P. N. Lobachevsky, G. D’cunha, and R.F. Martin. DNA strand breakage by 125I decay in synthetic oligodeoxynucleotide: 1. Fragment distribution and DMSO protection effect, Acta Oncol., 35 (1996) 803–8.
[15] D. Charlton, H. Nikjoo and J.L. Humm. Calculation of initial yields of single- and double-strand breaks in cell nuclei from electrons, protons and alpha particles, Int. J. Radiat. Biol., 56 (1989) 1-19.
[16] J.R. Milligan, C.C.L. Wu, J.N.N. Ng, J.A. Aguiler and J.F. Ward. Characterization of the reaction rate coefficient of DNA with the hydroxyl radical, Radiation research, 146 (1996) 510–513.
[17] M. Mokari, M.H. Alamatsaz, H. Moeini, A.A. Babaei Brojeny and R. Taleei. Track structure simulation of low energy electron damage to DNA using Geant4-DNA, Biomed. Phys. Eng. Express, 4 (2018) 065009.
[18] D. Frankenberg, H.J. Brede, U.J. Schrewe, C. Steinmetz, M. Frankenberg-Schwager, G. Kasten and E. Pralle. Induction of DNA Double-Strand Breaks by 1H and 4He Ions in Primary Human Skin Fibroblasts in the LET Range of 8 to 124 keV/um, Radiation Research, 151 (1999) 540–549.
[19] W. Friedland, M. Dingfelder, P. Jacob and H. Paretzke. Calculated DNA double-strand break and fragmentation yields after irradiation with He ions, Radiat. Phys. Chem., 72 (2005) 279–286.
[20] G. Famulari, P. Pater and S. Enger. Microdosimetry calculations for monoenergetic electrons using Geant4-DNA combined with a weighted track sampling algorithm, Phys. Med. Biol., 62 (2017) 5495–5508.