[1] M. Bauchinger, L. Koester, E. Schmid, J. Dresp and S. Streng. Chromosome aberrations in human lymphocytes induced by fission neutrons, International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine 45(5) (1984) 449–457.
[2] R.S. Stone. Neutron therapy and specific ionization, AJR 59 (1948) 771–785.
[3] M. Catterall. The treatment of advanced cancer by fast neutrons from the Medical Research Council's cyclotron at Hammersmith Hospital, London, European Journal of Cancer 10(6) (1974) 343–347.
[4] K. Tanaka, N. Gajendiran, S. Endo, K. Komatsu, M. Hoshi and N. Kamada. Neutron energy-dependent initial DNA damage and chromosomal exchange, Journal of Radiation Research 40(SUPPL) (1999) S36–S44.
[5] R.L. Dobson, T. Straume, A.V. Carrano, J.L. Minkler, L.L. Deaven, L.G. Littlefield and A.A. Awa. Biological Effectiveness of Neutrons from Hiroshima Bomb Replica: Results of a Collaborative Cytogenetic Study, Radiation Research 128(2) (1991) 143–149.
[6] T. Straume, J.C. McDonald, R.A. Pederson, D.J. Brenner and R.L. Dobson. Hiroshima-Like Neutrons from A-Bomb Replica: Physical Basis for Their Use in Biological Experiments, Radiation Research 128(2) (1991) 133–142.
[7] L. Gray and J. Read. Treatment of cancer by fast neutrons, Nature 152(3845) (1943) 53.
[8] L.H. Gray, A.D. Conger, M. Ebert, S. Hornsey and O. Scott. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy, The British Journal of Radiology 26(312) (1953) 638–648.
[9] R.C. Miller, S.A. Marino, S.G. Martln, K. Komatsu, C.R. Geard, D.J. Brenner and E.J. Hall. Neutron-energy-dependent cell survival and oncogenic transformation, Journal of Radiation Research 40(Suppl) (1999) S53–S59.
[10] M. Spotheim-Maurizot, M. Charlier and R. Sabattier. DNA radiolysis by fast neutrons, International Rournal of Radiation Biology 57(2) (1990) 301–313.
[11] E. Schmid, D. Regulla, S. Guldbakke, D. Schlegel and M. Roos. Relative biological effectiveness of 144 keV neutrons in producing dicentric chromosomes in human lymphocytes compared with 60Co gamma rays under head-to-head conditions, Radiation Research 157(4) (2002) 453–460.
[12] S. Agostinelli, J. Allison, K.a. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee and G. Barrand. GEANT4—a simulation toolkit, Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506(3) (2003) 250–303.
[13] M. Bernal, M. Bordage, J. Brown, M. Davídková, E. Delage, Z. El Bitar, S. Enger, Z. Francis, S. Guatelli and V. Ivanchenko. Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit, Physica Medica 31(8) (2015) 861–874.
[14] S. Incerti, A. Ivanchenko, M. Karamitros, A. Mantero, P. Moretto, H. Tran, B. Mascialino, C. Champion, V. Ivanchenko and M. Bernal. Comparison of GEANT4 very low energy cross section models with experimental data in water, Medical Physics 37(9) (2010) 4692–4708.
[15] R.D. Stewart. Induction of DNA Damage by Light Ions Relative to 60Co γ-rays, International Journal of Particle Therapy 5(1) (2018) 25–39.
[16] R.D. Stewart, S.W. Streitmatter, D.C. Argento, C. Kirkby, J.T. Goorley, G. Moffitt, T. Jevremovic and G.A. Sandison. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions, Physics in Medicine & Biology 60(21) (2015) 8249.
[17] F. Semsarha, B. Goliaei, G. Raisali, H. Khalafi and L. Mirzakhanian. An investigation on the radiation sensitivity of DNA conformations to 60Co gamma rays by using Geant4 toolkit, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 323 (2014) 75–81.
[18] M. Bernal, C. deAlmeida, S. Incerti, C. Champion, V. Ivanchenko and Z. Francis. The influence of DNA configuration on the direct strand break yield, Computational and Mathematical Methods in Medicine 2015 (2015).
[19] D. Charlton, H. Nikjoo and J. Humm. Calculation of initial yields of single-and double-strand breaks in cell nuclei from electrons, protons and alpha particles, International Journal of Radiation Biology (2009).
[20] S. Incerti, I. Kyriakou, M.A. Bernal, M.C. Bordage, Z. Francis, S. Guatelli, V. Ivanchenko, M. Karamitros, N. Lampe, S.B. Lee, S. Meylan, C.H. Min, W.G. Shin, P. Nieminen, D. Sakata, N. Tang, C. Villagrasa, H.N. Tran and J.M.C. Brown. Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project, Medical Physics 45(8) (2018) e722–e739.
[21] W.-G. Shin, M.-C. Bordage, D. Emfietzoglou, I. Kyriakou, D. Sakata, C.H. Min, S.B. Lee, S. Guatelli and S. Incerti. Development of a new Geant4-DNA electron elastic scattering model for liquid-phase water using the ELSEPA code, Journal of Applied Physics 124(22) (2018) 224901.
[22] Y. Hsiao and R. Stewart. Monte Carlo simulation of DNA damage induction by x-rays and selected radioisotopes, Physics in Medicine & Biology 53(1) (2007) 233.
[23] H. Nikjoo, P. O'Neill, M. Terrissol and D. Goodhead. Quantitative modelling of DNA damage using Monte Carlo track structure method, Radiation and Environmental Biophysics 38(1) (1999) 31–38.
[24] W. Friedland, P. Jacob, H.G. Paretzke, M. Merzagora and A. Ottolenghi. Simulation of DNA fragment distributions after irradiation with photons, Radiation and Environmental Biophysics 38(1) (1999) 39–47.
[25] F. Semsarha, G. Raisali, B. Goliaei and H. Khalafi. Microdosimetry of DNA conformations: relation between direct effect of 60Co gamma rays and topology of DNA geometrical models in the calculation of A-, B-and Z-DNA radiation-induced damage yields, Radiation and Environmental Biophysics 55(2) (2016) 243–254.
[26] M. Bernal, M.-C. Bordage, J. Brown, M. Davídková, E. Delage, Z. El Bitar, S. Enger, Z. Francis, S. Guatelli and V. Ivanchenko. Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit, Physica Medica 31(8) (2015) 861–874.
[27] J.B. Marion and F.C. Young. Nuclear Reaction Analysis: Graphs and Tables, (1968).
[28] H. Nikjoo, C.E. Bolton, R. Watanabe, M. Terrissol, P. O'Neill and D.T. Goodhead. Modelling of DNA damage induced by energetic electrons (100 eV to 100 keV), Radiation Protection Dosimetry 99(1-4) (2002) 77–80.
[29] M. Tajik, A.S. Rozatian and F. Semsarha. Calculation of direct effects of 60Co gamma rays on the different DNA structural levels: A simulation study using the Geant4-DNA toolkit, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 346 (2015) 53–60.
[30] M. Bernal and J. Liendo. An investigation on the capabilities of the PENELOPE MC code in nanodosimetry, Medical physics 36(2) (2009) 620–625.
[31] G. Baiocco, S. Barbieri, G. Babini, J. Morini, D. Alloni, W. Friedland, P. Kundrát, E. Schmitt, M. Puchalska and L. Sihver. The origin of neutron biological effectiveness as a function of energy, Scientific Reports 6 (2016) 34033.
[32] D.T. Goodhead and H. Nikjoo. Track structure analysis of ultrasoft X-rays compared to high-and low-LET radiations, International Journal of Radiation Biology 55(4) (1989) 513–529.
[33] E. Schmid, D. Schlegel, S. Guldbakke, R.-P. Kapsch and D. Regulla. RBE of nearly monoenergetic neutrons at energies of 36 keV–14.6 MeV for induction of dicentrics in human lymphocytes, Radiation and Environmental Biophysics 42(2) (2003) 87–94.
[34] R. Miller, C. Geard, D. Brenner, K. Komatsu, S. Marino and E. Hall. Neutron-Energy-Dependent Oncogenic Transformation of C3H 10% 1/2 Mouse Cells, Radiation Research 117(1) (1989) 114–127.
[35] T.K. Pandita and C.R. Geard. Chromosome aberrations in human fibroblasts induced by monoenergetic neutrons. I. Relative biological effectiveness, RadiationResearch 145(6) (1996) 730–739.