بهبود طیف‌سنجی گاما در پایش هوایی پرتویی با استفاده از الگوی میانگین متحرک خود همبسته یکپارچه

نویسندگان

سازمان انرژی اتمی ایران

10.22052/6.2.33

چکیده

مدل‌سازی دقیق و به هنگام فوتون دریافتی از منابع پرتوزای گاما، نقش مهم در فراهم آوردن اطلاعات پیشینی جهت پایش هوایی گاما دارد، در این مقاله از الگوی میانگین متحرک خود­همبسته یکپارچه (ARIMA) به‌منظور مدل‌سازی پایش هوایی گاما استفاده‌ شده است. روش پیشنهادی، با استفاده از منابع شناخته‌شده، مدل ARIMA منبع پرتوی گاما و اختلال‌های محیطی را تهیه می‌کند تا به‌عنوان اطلاعات پیش‌آگاهی در اختیار پردازشگر پایش هوایی برای آنالیز داده‌های اندازه‌گیری قرار دهد. فرآیند استخراج مدل و آموزش به‌صورت آفلاین و با منابع متعدد پرتوزا از منظر نوع و اندازه انجام گرفته و سپس مدل‌های استخراج‌شده با استفاده از توابع ارزیابی اعتبار سنجی شده، برای تعیین نوع و مقدار ماده پرتوزا در پایش هوایی پرتوی گاما در هنگام عملیات شناسایی به‌صورت برخط مورداستفاده قرار می‌گیرند. همچنین به­ منظور سنجش مدل‌سازی صورت گرفته، روش ARIMA پیشنهادی با سایر روش‌های مدل‌سازی فرآیندها، ازجمله روش میانگین متحرک خود همبسته یا ARMA در سه معیار بایاس، میانه قدر مطلق انحراف و متوسط مربع خطا مقایسه شد. نتایج نشان داد که روش پیشنهادی، تعداد فوتون دریافتی را با دقت بالاتری نسبت به سایر روش‌های رایج مدل‌سازی کرده است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Airborne gamma ray spectrometry improvement using autoregressive integrated moving average model

نویسندگان [English]

  • Mohsen Rezaei
  • Mansour Ashoor
  • Leila Sarkhosh
چکیده [English]

The precise and timely manner modeling of received photon counts from gamma-ray sources has an important role in providing afore information for Airborne Gamma Ray Spectrometry (AGRS). In this manuscript, the Auto-Regressive Integrated Moving Average (ARIMA) model has been used to model AGRS. The proposed method provides gamma source and environmental disturbances ARIMA model, using known radioactive sources, to arrange the afore information for AGRS process experts to analyze the spectrometry data. The model extraction process and training will be done offline using different sizes and types of radioactive sources. The extracted models then being validated by evaluation functions to determine the type and amount of radionuclides during online AGRS. In order to evaluate the implemented modeling, the proposed ARIMA method is compared with other process modeling methods, including the Auto Regressive Moving Average ARMA in three bias, median absolute deviation (MAD) and the mean square error (MSE) criteria. The results show that the proposed method models the received photon counts much more accurate than other common methods.
 

کلیدواژه‌ها [English]

  • Airborne Gamma Ray Spectrometry
  • Photon
  • ARMA Modeling
  • Auto Regressive Integrated Moving Average
[1] R. Casanovas, J.J. Morant, M. Salvadó. Development and Calibration of a Real-Time Airborne Radioactivity Monitor Using Gamma-Ray Spectrometry on a Particulate Filter, IEEE Transactions on Nuclear Science, 61(2) (2014) 727–731. [2] E. Wilhelm, S. Gutierrez, N. Arbor, S. Ménard, A.M. Nourreddine. Study of different filtering techniques applied to spectra from airborne gamma spectrometry, 164 (2016) 268–279. [3] D. Srinivas, V. Ramesh Babu, I. Patra, S. Tripathi, M.S. Ramayya, A.K. Chaturvedi. Assessment of background gamma radiation levels using airborne gamma ray spectrometer data over uranium deposits, Cuddapah Basin, India – A comparative study of dose rates estimated by AGRS and PGRS, Journal of Environmental Radioactivity, 167 (2017) 1–12. [4] IAEA Technical report series 323, Airborne Gamma Ray Spectrometer Surveying, (1998). [5] R L. Sander, M. Nadeau, R L. Grasty. An airborne gamma snow survey in the James Bay region, Proceedings of the 65th Annual Eastern Snow Conference, Fairlee (Lake Morey), Vermont, USA (2008). [6] H. Loijens. Measurement of snow water storage in the lake superior basin using aerial gamma-ray spectrometry, Canadian Water Resources Journal / Revue canadienne des ressources hydriques, 5(4) (2013) 40–54. [7] D.L. Dent, R.A. MacMillan, T.L. Mayr, W.K. Chapman, S.M. Berch. Use of Airborne Gamma Radiometric to Infer Soil Properties for a Forested Area in British Columbia, Journal of Ecosystems and Management, 14(1) (2013) 1–12. [8] R. Moonjuna, D.P. Shresthaa, V.G. Jettena, F. J.A. van Ruitenbeeka. Application of airborne gamma-ray imagery to assist soil survey: A case study from Thailand, Geoderma, 289(1) (2017) 196–212. [10] G.E.P. Box, G.M. Jenkins, Time Series Analysis, Forecasting and Control, 5th Edition Holden-Day, Inc. San Francisco, CA, USA (2015) ISBN: 978-1-118-67502-1. [11] G. U. Yule. On a method of investigating periodicities in disturbed series, with special reference to Wolfer's sunspot numbers, Philos. Trans. R. Soc. London Ser. A, 226 (1927) 67–298. [13] B.R.S. Minty. Airborne gamma ray spectrometric background estimation using full spectrum analysis, Geophysics, 57(2) (1992) 279–287. [14] P.B. Siegel. Gamma Spectroscopy of Environmental Samples, American Journal of Physics, 81 (2013) 381–388.