[1[ J.L. Meyer and W. Hinkelbein. IMRT, IGRT, SBRT Advances in the Treatment Planning and Delivery of Radiotherapy. Basel, Karger Publishers, (2007).
]2[ C. Baldock, Y.D. Deene, S. Doran, G. Ibbott, A. Jirasek, M. Lepage, K.B. McAuley, M. Oldham, L.J. Schreiner. Polymer gel dosimetry. Phys. Med. Biol. 55 (2010) R1–R63.
]3 [G. Ibbott. Application of gel dosimetry. J. Phys. Conf. Ser. 3 (2004) 58–77.
]4 [A. Moutsatsos, L. Petrokokkinos, P. Karaiskos, P. Papagiannis, E. Georgiou, K. Dardoufas, P. Sandilos, M. Torrens, E. Pantelis, I. Kantemiris, L. Sakelliou, I. Seimenis. Gamma Knife output factor measurements using VIP polymer gel dosimetry. Med. Phys. 36 (2009) 4277–4287.
]5 [Y.S. Soliman, M.I. El Gohary, M.H. Abdel Gawad, E.A. Amin, O.S. Desouky. Fricke gel dosimeter as a tool in quality assurance of the radiotherapy treatment plans. Appl. Radiat. Isotopes. 120 (2017) 126–132.
]6[ S.M. Abtahi, M.H. Zahmatkesh, H. Khalafi. Investigation of an improved MAA-based polymer gel for thermal neutron dosimetry. J. Radioanal. Nucl. Chem. 307 (2016) 855–868.
]7[ O.A. Zeidan, S.I. Sriprisan, O. Lopatiuk-Tirpak, P.A. Kupelian, S.L. Meeks, M.D. Anderson, W.C. Hsi, Z. Li, J.R. Palta, M.J. Maryanski. Dosimetric evaluation of a novel polymer gel dosimeter for proton therapy. Med. Phys. 37 (2010) 2145–2152.
]8[ U. Ramm, U. Weber, M. Bock, M. Krämer, A. Bankamp, M. Damrau, C. Thilmann, H.D. Bottcher, L.R. Schad, G. Kraft. Three-dimensional BANGTM gel dosimetry in conformal carbon ion radiotherapy. Phys. Med. Biol. 45 (2000) N95–N102.
]9[ M.J. Maryanski, G.S. Ibbott, P. Eastman, R.J. Scultz, J.C. Gore. Radiation therapy dosimetry using magnetic resonance imaging of polymer gels. Med. Phys. 23 (1996) 699–705.
]10[ S.M. Abtahi, S.M.R. Aghamiri, H. Khalafi. Optical and MRI investigations of an optimized acrylamide-based polymer gel dosimeter. J. Radioanal. Nucl. Chem. 300 (2014) 287–301.
]11[ S.M. Abtahi. Characteristics of a novel polymer gel dosimeter formula for MRI scanning: Dosimetry, toxicity and temporal stability of response. Phys. Medica. 32 (2016) 1156–1161.
]12[ R.J. Senden, P.D. Jean, K.B. McAuley, L.J. Schreiner. Polymer gel dosimeters with reduced toxicity: a preliminary investigation of the NMR and optical dose–response using different monomers. Phys. Med. Biol. 51 (2006) 3301–3314.
]13[ S.M. Abtahi, R. Jafari Khalilabadi, S. Aftabi. An investigation into the effect of magnetic resonance imaging (MRI) echo time spacing and number of echoes on the sensitivity and dose resolution of PAGATUG polymer-gel dosimeter. Int. J.. Radia. Res. 15 (2017) 185–196.
]14[ T.G. Maris, E. Pappas, T. Boursianis, G. Kalaitzakis, N. Papanikolaou, L. Watts, M. Mazonakis, J. Damilakis. 3D polymer gel MRIdosimetry using a 2D haste, A 2D TSE AND A 2D SE multi echo (ME) T2 relaxometric sequences: Comparison of dosimetric results. Phys. Medica. 32 (2016) 238–239.
]15[ Y. Watanabe, H. Kubo. A variable echo-number method for estimating R2 in MRI-based polymer gel dosimetry. Med. Phys. 38 (2011) 975–982.
]16[ C. Baldock, M. Lepage, S.A. Back, P.J. Murry, P.M. Jayasekera, D. Porter, T. Kron. Dose resolution in radiotherapy gel dosimetry: effect of echo spacing in MRI pulse sequence. Phys. Med. Biol. 46 (2001) 449–460.
]17 [IAEA. Absorbed dose determination in external beam radiotherapy. An International Code of Practice for Dosimetry based on standards of absorbed dose to water. IAEA technical reports No. 398, Vienna, Austria (2000).
]18 [Y. De Deene. Fundamentals of MRI measurements for gel dosimetry. J. Phys. Conf. Ser. 3 (2004) 87–114.
]19 [Y.D. Deene, R. Walle, E. Achten, C.D. Wagter. Mathematical analysis and experimental investigation of noisein quantitative magnetic resonance imaging applied in polymer gel dosimetry. Signal. Process. 70 (1998) 85–101.
]20 [C. Westbrook.MRI in Practice. Wiley Publishers. USA.(2011).
]21 [A.J. Venning. Investigation of radiation sensitive normoxic polymer gels for radiotherapy dosimetry.PhD thesis,Queensland University of Technology, (2006).
]22 [JCGM. In Evaluation of measurement data - Guide to the expression of uncertainty in measurement, JCGM Report (2010).
]23 [Y.D. Deene, C.D. Wagter. Artefacts in multi-echo T2 imaging for high-precision gel dosimetry: III. Effects of temperature drift during scanning. Phys. Med. Biol. 46 (2001) 2697–2711.
]24 [Y. De Deene, C. De. Wagter, W. De. Neve, E. Achten. Artefacts in multi-echo T2 imaging for high-precision gel dosimetry: II. Analysis of B1-field inhomogenity. Phys. Med. Biol. 45 (2000) 1825–1839.
]25 [Y.D. Deene, C.D. Wagter, W.D. Neve, E. Achten. Artefacts in multi-echo T2 imaging for high-precision gel dosimetry: I. Analysis and compensation of eddy currents. Phys Med. Biol. 45 (2000) 1807–1823.
]26 [Y.D. Deene, J. Vandecasteele. On the reliability of 3D gel dosimetry. J. Phys. Conf. Ser. 444 (2013) 012015.
]27 [J.F. Schenck. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med. Phys. 23 (1996) 815–50.
]28 [Y. Watanabe, G.M. Perera, R.B. Mooij. Image distortion in MRI-based polymer gel dosimetry of Gamma Knife stereotactic radiosurgery systems. Med Phys. 29 (2002) 797–802.