[1] ICRU. Neutron Dosimetry for Biology and Medicine. ICRU Report 26. Bethesda-Maryland, USA, (1977).
[2] H.H. Rossi, M. Zaider. Microdosimetry and its applications. Springer, (1996).
[3] H.H. Rossi, W. Rosenzweig. A device for the measurement of dose as a function f specific ionization. Radiology. 64 (1955) 404–411.
[4] J. Booz. Development of dose equivalent meters based on microdosimetric principles. Radiat. Environ. Biophys. 23 (1984) 155–170.
[5] U.J. Schrewe, H.J. Brede, G. Dietze. Dosimetry in mixed neutron-photon fields with tissue-equivalent proportional counters. Radiat. Prot. Dosim. 29 (1989) 41–45.
[6] U.J. Schrewe, H. Schuhmacher, H.J. Brede, G. Dietze. Determination of photon and neutron dose fractions with tissue-equivalent proportional counters. Radiat. Prot. Dosim. 31 (1990) 143–147.
[7] M. Farahmand, A. Bos, L. De Nardo, C. Van Eijk. First microdosimetric measurement with a TEPC based on a GEM. Radiat. Prot. Dosim. 110 (2004) 839–843.
[8] C. Wang, M. Seidaliev, A. Mandapaka. Design and simulation of a GEM—based TEPC as a neutron REM meter. Radiat. Prot. Dosim. 126 (2007) 559–563.
[9] G. Orchard, K. Chin, W. Prestwich, A. Waker, S. Byun. Development of a thick gas electron multiplier for microdosimetry. Nucl. Instrum. Meth. A. 638 (2011) 122–126.
[11] H. Schuhmacher. Tissue-equivalent proportional counters in radiation protection dosimetry: expectations and present state. Radiat. Prot. Dosim. 44 (1992) 199–206.
[12] A. Moslehi, G. Raisali. A multi-element thick gas electron multiplier-based microdosemeter for measurement of neutron dose-equivalent: a Monte Carlo study. Radiat. Prot. Dosim. 176 (2017) 404–410.
[13] F. Sauli. GEM: a new concept for electron amplification in gas detectors. Nucl. Instrum. Meth. A. 386 (1997) 531–534.
[14] R. Chechik, A. Breskin, C. Shalem, D. Mormann. Thick GEM-like hole multipliers: Properties and possible applications. Nucl. Instrum. Meth. A. 44 (2004) 303–308.
[15] G. Leuthold, V. Mares, H. Schraube. Calculation of neutron ambient dose equivalent on the basis of the ICRP revised quality factors. Radiat. Prot. Dosim. 40 (1992) 77–84.
[16] S. Agostinelli, J. Allison, K.A. Amako, J. Apostolakis. Geant4-a simulation toolkit. Nucl. Instrum. Meth. A. 506 (2003) 250–303.
[17] U. Fano. Note on Bragg-Gray cavity principle for measuring energy dissipation. Radiat. Res. 1 (1954) 237–240.
[18] A. Moslehi, G. Raisali, M. Lemahi. Simulation and experimental study of an indigenously designed and constructed THGEM-based microdosimeter for dose-equivalent measurement. Radiat. Meas. 86 (2016) 56–62.
[19] International Standard. Reference neutron radiations. ISO 8529-1. Switzerland, (2001).
[20] H.R. Vega-Carrillo, E. Manzaranes-Acuna, A. M. Becerra-Ferreiro, A. Carrillo-Nunez. Neutron and gamma ray spectra of 239PuBe and 241AmBe. Appl. Radiat. Isot. 57 (2002) 167–170.
[21] R. Billnert, F.J. Hambcsh, A. Oberstedt, S. Oberstedt. New prompt spectral γ-ray data from the reaction 252Cf(sf) and its implication on present evaluated nuclear data files. Phys. Rev. C. 87 (2013) 024601.
[22] A.M. Kellerer, K. Hahn. Considerations on a revision of the quality factor. Radiat. Res. 114 (1988) 480–488.
[23] ICRU. Quality factor in radiation protection. ICRU Report 40. Bethesda-Maryland, USA, (1986).
[24] V.D. Nguyen. A dose equivalent meter based on the tissue-equivalent proportional counter, and problems encountered in its use. Radiat. Prot. dosim. 9 (1984) 223–225.
[25] J. Booz. Development of dose equivalent meters based on microdosimetric principles. Radiat. Environ. Biophys. 23 (1984) 155–170.