[1] P. Lu, L. Men, K. Sooley, Q. Chen. Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature. Appl. Phys. Lett. 94.13 (2009) 131110.
[2] E.K. Hussman. A holographic interferometer for measuring radiation energy depositionpro_les in transparent liquids. Appl. Opt. 10(1971)182-186.
[3] J.A. Devanney. The use of a holographic interferometer to measure absorbed energy distributions in water from pulsed electron beams. Nucl. Instrum. Methods. 120.1 (1974) 77-84.
[4] WHO. WHO–Cancer. (2011) [cited 2011 9/52011].
[5] F.M. Khan, J.P. Gibbons. Khan's the physics of radiation therapy. Lippincott Williams & Wilkins, (2014).
[6] E.B. Pogorsak. Radiation Oncology Physics:A Handbook for Teachers and Students. IAEA, (2005).
[7] E.C. Halperin, L.W. Brady, D.E. Wazer, C.A. Perez. Perez & Brady's principles and practice of radiation oncology. Lippincott Williams & Wilkins, (2013).
[8] A. Cavan, J. Meyer. Digital holographic interferometry: A novel optical calorimetry technique for radiation dosimetry. Med Phys. 41.2 (2014).
[9] A. Miller, E.K. Hussmann, W.L. McLaughlin. Interferometer for measuring fast changes of refractive index and temperature in transparent liquids. Rev. Sci. Instrum. 46 (1975) 1635-1638.
[10] A. Miller, W.L. McLaughlin. Holographic measurements of electron-beam dose distributions around inhomogeneities in water. Phys Med Biol. 21.2 (1976) 285.
[11] A. Miller, W. L. McLaughlin. Imaging and measuring electron beam dose distributions using holographic interferometry. Nucl. Instr. Meth. 128.2 (1975): 337-346.
[12] B. Grosswendt. The angular dependence and irradiation geometry factor for the dose equivalent for photons in slab phantoms of tissue-equivalent material and PMMA. Radiat Prot Dosim. 35.4 (1991) 221-235.
[13] M.E. Poletti, O.D. Goncalves, I. Mazzaro. X-ray scattering from human breast tissues and breast-equivalent materials. Phys. Med. Biol. 47.1 (2001) 47.
[14] A.K. Jones, D.E. Hintenlang, W.E. Bolch. Tissue-equivalent materials for construction of tomographic dosimetry phantoms in pediatric radiology. Med Phys. 30.8 (2003) 2072-2081.
[15] J.L. Chartier, B. Grosswendt, G.F. Gualdrini, H. Hirayama, C-M. Ma, F. Padoani, N. Petoussi, S. M. Seltzer, M. Terrissol. Reference fluence-to-dose-equivalent conversion coefficients and angular dependence factors for 4-element ICRU tissue, water and PMMA slab phantoms irradiated by broad electron beams. Radiat. Prot. Dosim. 63.1 (1996) 7-14.
[16] J.W. Cooley, P.A. Lewis, P.D. Welch. The fast Fourier transform and its applications. IEEE Trans. Edu. 12 (1969) 27-34.
[17] U. Schnars. Direct phase determination in hologram interferometry with use of digitally recorded holograms. JOSA A.11 (1994) 2011-2015.
[18] E.K. Hussmann, W.L. McLaughlin. Dose-distribution measurement of high-intensity pulsed radiation by means of holographic interferometry. Radiat. Res. 47.1 (1971) 1-14.
[19] G. Beadie, M. Brindza, R.A. Flynn, A. Rosenberg, J.S. Shirk. Refractive index measurements of poly (methyl methacrylate)( PMMA) from 0.4–1.6 μm. Appl. Opt. 54.31 (2015) F139-F143.
[20] L. Hongy, D.E. Day, J.O. Stoffer. Optical and mechanical properties of optically transparent poly (methyl methacrylate) composites. Polym Eng Sci. 32.5 (1992) 344-350.
[21] M. Chahar, A. Vazid, K. Sushil. Spectral Investigations of Kiton Red-620 Doped Polymethylmethacrylate. MSA. (2012).
[22] I. Jones, J. Rudlin. Process monitoring methods in laser welding of plastics. Proceedings of the conference joining plastics. (2006).