[1] J.R. Cameron and J.G. Skofronick. Medical Physics. Wiley Online Library, (1978).
[2] F.M. Khan. The physics of radiation therapy. Lippincott Williams & Wilkins (2010).
[3] M. Navabpour, B. Mofid. Introduction a new system of treatment of cancer tumors- photoelectron therapy. J. Paramed. Sci. 4, (2003), 211–219.
[4] M. Navabpour, M, Mofid, B, Nazari. Study the photoelectron therapy effects on human cancer cells. J. Lor. Uni. Med. Sci. 8, (2006), 79–84.
[5] W. Nordiana, N. Bishara, T. Ackerly, C. Fa He, P. Jackson, Ch. Wong, R. Davidson, M. Geso. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine Nanotechnology, Biol. Med. 5(2), (2009), 136–142.
[6] S. Corde, A. Joubert, J.F. Adam, A.M. Charvet, J.F. Le Bas, F. Esteve, H. Elleaume, J. Balosso. Synchrotron radiation-based experimental determination of the optimal energy for cell radiotoxicity enhancement following photoelectric effect on stable iodinated compounds. Br. J. Cancer 91(3), (2004), 544.
[7] J.F. Hainfeld, D.N. Slatkin, T.M. Focella, and H.M. Smilowitz. Gold nanoparticles: a new X-ray contrast agent. Br. J. Radiol. (2014).
[8] I.J. Das, M. Herold, C.C. Stobbe, R.V. Iyer, J.D. Chapman. Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int. J. Radiat. Biol. 76(10), (2000), 1357–1364.
[9] R.L. Metzger and K.A. Van Riper. Fetal dose assessment from invasive special procedures by Monte Carlo methods. Med. Phys. 26(8), (1999), 1714–1720.
[10] J.C. Yanch and A.B. Dobrzeniecki. Monte Carlo simulation in SPECT: complete 3D modeling of source, collimator and tomographic data acquisition. IEEE Trans. Nucl. Sci. 40(2), (1993), 198–203.
[11] J.G. Wierzbicki, M.J. Rivard, D.S. Waid and V.E. Arterbery. Calculated dosimetric parameters of the IoGold 125I source model 3631A. Med. Phys. 25(11), (1998), 2197–2199.
[12] J.J. DeMarco, J.B. Smathers, C.M. Burnison, Q.K. Ncube and T.D. Solberg. CT-based dosimetry calculations for 125 I prostate implants. Int. J. Radiat. Oncol. Biol. Phys. 45(5), (1999), 1347–1353.
[13] M.J. Rivard. Monte Carlo calculations of AAPM Task Group Report No. 43 dosimetry parameters for the MED3631‐A/M 125I source. Med. Phys. 28(4), (2001), 629–637.
[14] S.H. Cho. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys. Med. Biol. 50(15), (2005), 163.
[15] T.D. Solberg, K.S. Iwamoto and A. Norman. Calculation of radiation dose enhancement factors for dose enhancement therapy of brain tumours. Phys. Med. Biol. 37(2), (1992), 439.
[16] M. Ghorbani, D. Pakravan, M. Bakhshabadi and A.S. Meigooni. Dose enhancement in brachytherapy in the presence of gold nanoparticles: a Monte Carlo study on the size of gold nanoparticles and method of modelling. Nukleonika 57, (2012), 401–406.
[17] M. Douglass, E. Bezak and S. Penfold. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model. Med. Phys. 40(7), (2013).
[18] E. Lechtman. A Monte Carlo-based model of gold nanoparticle radiosensitization. (2014).
[19] M.K.K. Leung, J.C.L. Chow, B.D. Chithrani, M.J.G. Lee, B. Oms and D.A. Jaffray. Irradiation of gold nanoparticles by X-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med. Phys. 38(2), (2011), 624–631.
[20] R. Xu, J. Ma, X. Sun, Z. Chen, X. Jiang, Z. Guo, L. Huang, Y. Li, M. Wang, C. Wang, J. Liu, X. Fan, J. Gu, X. Chen, Y. Zhang, N. Gu. Ag nanoparticles sensitize IR-induced killing of cancer cells. Cell Res. 19(8), (2009), 1031.
[21] D. Yang, Sh. Chen, P. Huang, X. Wang, W. Jiang, O. Pandoli, D. Cui. Bacteria-template synthesized silver microspheres with hollow and porous structures as excellent SERS substrate. Green Chem. 12(11), (2010), 2038–2042.
[22] C. Baker, A. Pradhan, L. Pakstis, D.J. Pochan and S.I. Shah. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol. 5(2), (2005), 244–249.
[23] P. Huang, D.P. Yang, C. Zhang, J. Lin, M. He, L. Bao, D. Cui. Protein-directed one-pot synthesis of Ag microspheres with good biocompatibility and enhancement of radiation effects on gastric cancer cells. Nanoscale 3(9), (2011), 3623–3626.
[24] J.S. Hendricks, G.W. McKinney, L.S. Waters and H.G. Hughes. MCNPX User’s manual, version 2.5. 0. Rep. LA CP 2, (2005), 408.
[25] L.S. Waters, J. Hendricks and G. McKinney. Monte Carlo N-particle transport code system for multiparticle and high energy applications. Los Alamos, NM Los Alamos Natl. Lab. (2002).
[26] J.F. Briesmeister. MCNPTM-A general Monte Carlo N-particle transport code. Version 4C, LA-13709-M, Los Alamos Natl. Lab, (2000), 2.
[27] D.B. Pellowitz. MCNPX User’s manual, version 2.6. 0. Los Alamos Rep. No. LA CP 2, (2007), 408.
[28] K.F. Eckerman, M. Cristy and J.C. Ryman. The ORNL mathematical phantom series. Oak Ridge, TN Oak Ridge Natl. Lab. (1996).
[29] A. Wambersie, J. Zoetelief, H.G. Menzel and H. Paretzke. The ICRU (International Commission on Radiation Units and Measurements): its contribution to dosimetry in diagnostic and interventional radiology. NTP (2005).
[30] H. Ranjbar, M. Shamsaei and M.R. Ghasemi. Investigation of the dose enhancement factor of high intensity low mono-energetic X-ray radiation with labeled tissues by gold nanoparticles. Nukleonika 55, (2010), 307–312.