[1] D.N. Slatkin, P. Spanne, F.A. Dilmanian and M. Sandborg. Microbeam radiation therapy. Med. Phys. 19 (1992) 1395–1400.
[2] D.N. Slatkin, P. Spanne, F.A. Dilmanian, J.O. Gebbers and J.A. Laissue. Subacute neuropathological effects of microplanar beams of x-rays from a synchrotron wiggler. Proc. Natl. Acad. Sci. USA, 92 (1995) 8783–8787.
[3] H.j. Curtis. the use of a deutron microbeam for simulating the the biological effects of heavy cosmic-ray particles. Radiat. Res. Suppl. (1967) 250–257.
[4] A. Bouchet, B. Lemasson, G. Le Duc, C. Maisin, E. Brauer-Krisch, E.A. Siegbahn, L. Renaud, E. Khalil, C. Remy, C. Poillot, A. Bravin, J.A. Laissue, E.L. Barbier and R. Serduc. Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks, Int. J. Radiat. Oncol. Biol. Phys. 78 (2010) 1503–1512.
[5] J.A. Laissue, N. Lyubimova, H.P. Wagner, D. W, Archer, D. N. Slatkin, M. Di Michiel, C. Nemoz, M. Renier, E, Brauer, P. O. Spanne, J. Gebbers, K, Dixon, H. Blattmann. Microbeam radiation therapy. Proc. Of SPIE, Denver, USA. (1999) 38-45.
[6] Y. Prezado, G .Fois, G .Le Duc , A .Bravin. Gadolinium dose enhancement studies in microbeam radiation therapy. Med. Phys. 36 (2009) 3568–74.
[7] J. Torres, M.J. Buades, J.F. Almansa, R. Guerrero and A.M. Lallena. Dosimetry characterization of 32P intravascular brachytherapy source wires using MC codes PENELOPE and GEANT4. Med. Phys. 31 (2004) 296–304.
[8] J. Spiga, E.A. Siegbahn, E. Brauer-Krisch, P. Randaccio and A. Bravin. The geant4 toolkit for microdosimetry calculations: application to microbeam radiation therapy (MRT). Med Phys. 34(11) (2007) 4322–4330.
[9] J. Crosbie, I. DzintarsSvalbe, S.M. Midgley, N. Yagi, P.A. Walton Rogers and R. Lewis. A method of dosimetry for synchrotron microbeam radiation therapy using radiochromic films of different sensitivity. Phys. Med. Biol. 53 (2008) 6861–6877.
[10] Z. Bencokova, J. Balosso and N. Foray. Radiobiological features of the anti-cancer strategies involving synchrotron x-rays. J. Synchrotron Radiat. 15 (2008) 74–85.
[11] E. Brauer-Krisch, H. Requardt, T. Brochard, M. Renier, J.A. Laissue and A. Bravin. New technology enables high precision multislit collimators for microbeam radiation therapy. Rev. Sci. Instrum. 80 (2009) 074301.
[12] I. Martinez-Rovira, J. Sempau, J.M. Fernandez-Varea, A. Bravin and Y. Prezado. Monte Carlo dosimetry for forthcoming clinical trials in x-ray microbeam radiation therapy. Phys. Med. Biol. 55 (2010) 4375–4388.
[13] O.K. Harling, K.A. Roberts, D.J. Moulin and R.D. Rogus. Head phantoms for neutron capture therapy Med. Phys. 22 (1995) 579–83.
[14] E. Braüer-Krisch, A. Rosenfeld, M. Lerch, M. Petasecca, M. Akselrod, J. Sykora, J. Bartz, M.Ptaszkiewicz, P. Olko, A. Berg, M. Wieland, S. Doran, T. Brochard, A. Kamlowski, G. Cellere, A. Paccagnella, E.A. Siegbahn, Y. Prezado, I. Martínez-Rovira, A. Bravin, L. Dusseau and P. Berkvens. Potential high resolution dosimeters for MRT. AIP Conf. Proc. 1266 (2010) 89–97.
[15] E.A. Siegbahn, E. Brauer-Krisch, J. Stepanek, H. Blattmann, J.A. Laissue and A. Bravin. Dosimetric studies of microbeam radiation therapy with Monte Carlo simulations. Nucl.Instrum. Methods A. (2005) 54–58.
[16] F. Salvat, J.M. Fernández-Varea, J. Sempau. PENELOPE, a Code System for Monte Carlo Simulation of Electron and Photon Transport. OECD Nuclear Energy Agency, Issyles-Moulineaux-France, (2003).
[17] M. De Felici, R. Felici, M. Sanchez del Rio, C.Ferreto, T. Bacarian and F.A. Dilmanian. Dose distribution from x-ray microbeam arrays applied to radiation therapy: an egs4 monte carlo study. Med Phys. 32(8) (2005) 2455–63.
[18] I. Martínez-Rovira, J. Sempau, Y. Prezado. Development and commissioning of a Monte Carlo photon beam model for the forthcoming clinical trials in Microbeam Radiation Therapy. Med. Phys. 39 (2012) 119–131.
[19] ICRU. Photon, electron, proton and neutron interaction data for body tissues, with data disk, ICRU Report 46D, Bethesda-Maryland, USA, (1992).