[1] H. Cember, Introduction to Health Physics. McGraw-Hill, New York, (2000).
[2] N. Ekinci, N. Astam. Measurement of mass attenuation coefficients of biological materials by energy dispersive X-ray fluorescence spectrometry. Radiat. Meas. 42(3) (2007) 428–430.
[3] S. Gowda, S. Krishnaveni, T. Yashoda, T. Umesh, R. Gowda. Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds. Pramana. 63(3) (2004) 529–541.
[4] G. Bhandal, K. Singh, R. Rani, V. Kumar. Energy absorption coefficients for 662 and 1115 keV gamma rays in some fatty acids. Appl. Radiat. Isot. 45(3) (1994) 379–381.
[5] U.u. Çevik, H. Baltaş, A. Çelik, E. Bacaksız. Determination of attenuation coefficients, thicknesses and effective atomic numbers for CuInSe2 semiconductor. Nucl. Instrum. Methods. Phys. Res. B. 247(2) (2006) 173–179.
[6] A. Akar, H. Baltaş, U. Çevik, F. Korkmaz, N. Okumuşoğlu. Measurement of attenuation coefficients for bone, muscle, fat and water at 140, 364 and 662keV γ-ray energies. J. Quant. Spectrosc. Radiat. Transf. 102(2) (2006) 203–211.
[7] V. Manjunathaguru, T. Umesh. Simple parametrization of photon mass energy absorption coefficients of H-, C-, N-and O-based samples of biological interest in the energy range 200–1500 keV. Pramana. 72(2) (2009) 375–387.
[8] O. Gurler, U.A. Tarim. An investigation on determination of attenuation coefficients for gamma-rays by Monte Carlo method. J. Radioanal. Nucl. Chem. 293(1) (2012) 397–401.
[9] S. Sharifi, R. Bagheri, S. Shirmardi. Comparison of shielding properties for ordinary, barite, serpentine and steel–magnetite concretesusing MCNP-4C code and available experimental results. Ann. Nucl. Energy. 53 (2013) 529–534.
[10] N. Demir, U.A. Tarim, M.-A. Popovici, Z.N. Demirci, O. Gurler, I. Akkurt. Investigation of mass attenuation coefficients of water, concrete and bakelite at different energies using the FLUKA Monte Carlo code. J Radioanal. Nucl. Chem. 298(2) (2013) 1303–1307.
[11] P.S. Kore, P.P. Pawar. Measurements of mass attenuation coefficient, effective atomic number and electron density ofsome amino acids. Radiat. Phys. Chem. 98 (2014) 86–91.
[12] V. Singh, N. Badiger, N. Kucuk. Assessment of methods for estimation of effective atomic numbers of common human organs and tissue substitutes: waxes, plastics and polymers. J. Radioprot. 49(2) (2014) 115–121.
[13] A. El-Khayatt, A. Ali, V.P. Singh. Photon attenuation coefficients of Heavy-Metal Oxide glasses by MCNP code, XCOM program and experimental data: A comparison study. Nucl. Instrum. Methods. Phys. Res. A. 735 (2014) 207–212.
[14] V. Trunova, A. Sidorina, V. Kriventsov. Measurement of X-ray mass attenuation coefficients in biological and geological samples in the energy range of 7–12keV. Appl. Radiat. Isot. 95 (2015) 48–52.
[15] A. Vejdani-Noghreiyan, E. Aliakbari, A. Ebrahimi-Khankook, M. Ghasemifard. Theoretical and experimental determination of mass attenuation coefficients of lead-based ceramics and their comparison with simulation. Radiat. Prot. Dosimetry. 31(2) (2016) 142–149.
[16] S.M. Vahabi, M. Bahreinipour, M.S. Zafarghandi. Determining the mass attenuation coefficients for some polymers using MCNP code: A comparison study. Vacuum. (2016).
[17] F.M. Khan, J.P. Gibbons. Khan's the physics of radiation therapy. Lippincott Williams & Wilkins (2014).
[18] D. Banjade, A. Tajuddin, A. Shukri. A study of Rhizophora spp wood phantom for dosimetric purposes using high-energy photon and electron beams. Appl. Radiat. Isot. 55(3) (2001) 297–302.
[19] M.W. Marashdeh, R. Hashim, A.A. Tajuddin, S. Bauk, O. Sulaiman. Effect of particle size on the characterization of binderless particleboard made from Rhizophora spp. Mangrove wood for use as phantom material. BioResources 6(4) (2011) 4028–4044.
[20] M. Marashdeh, S. Bauk, A. Tajuddin, R. Hashim. Measurement of mass attenuation coefficients of Rhizophora spp. binderless particleboards in the 16.59–25.26 keV photon energy range and their density profile usingx-ray computed tomography. Appl. Radiat. Isot. 70(4) (2012) 656–662.
[21] A. Abuarra, S. Bauk, R. Hashim, S. Kandaiya, E.T. Tousi, K. Aldroobi. Microstructure examination, elemental composition analysis of gum arabic bonded Rhizophora spp. Particleboards and their potential as tissue equivalent material. Int. J. Chem. Environ. Biol. Sci. 2(1) (2014) 2320–4087.
[22] D. Bradley, A. Tajuddin, C.W.A.C.W. Sudin, S. Bauk. Photon attenuation studies on tropical hardwoods. Int. J. Rad. Appl. Instrum. A. 42(8) (1991) 771–773.
[23] A. Tajuddin, C.C.W. Sudin, D. Bradley. Radiographic and scattering investigation on the suitability of Rhizophora sp. as tissue-equivalent mediumfor dosimetric study. Radiat. Phys. Chem. 47(5) (1996) 739–740.
[24] B. Shakhreet, S. Bauk, A. Tajuddin, A. Shukri. Mass attenuation coefficients of natural Rhizophora spp. wood for X-rays in the 15.77–25.27 keV range. Radiat. Prot. Dosimetry. 135(1) (2009) 47–53.
[25] M.W. Marashdeh, I.F. Al-Hamarneh, E.M.A. Munem, A. Tajuddin, A. Ariffin, S. Al-Omari. Determining the mass attenuation coefficient, effective atomic number, and electron density of raw wood and binderless particleboards of Rhizophora spp. by using Monte Carlo simulation. Results. Phys. 5 (2015) 228–234.
[26] M. Berger, J. Hubbell. Photon Cross section on a Personal Computer (XCOM). Center for Radiation Research of Standards. MD 20899.
[27] http://physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html.
[28] M. Bethesda. Tissue substitutes in radiation dosimetry and measurement. International Commission on Radiation Units and Measurements (ICRU), (1989).
[29] M. Medhat, S. Shirmardi, V. Singh. Comparison of geant 4, MCNP simulation codes of studying attenuation of gamma rays through biological materials with XCOM and experimental data. J. Comput. Appl. Math. (2014).
[30] V. Singh, S. Shirmardi, M. Medhat, N. Badiger. Determination ofmass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuum. 119 (2015) 284–288.
[31] S. Jayaraman, L.H. Lanzl. Clinical radiotherapy physics, Springer Science & Business Media, (2011).