اثرغلظت‌های مختلف ژلاتین در دز 36 گری پرتوهای گاما بر پارامترهای فراصوتی ژل پلیمر MAGIC-f

نویسندگان

1 دانشگاه تربیت مدرس

2 دانشگاه علوم پزشکی شهید بهشتی

10.22052/4.4.27

چکیده

هدف این مطالعه بررسی تأثیر غلظت ژلاتین خوراکی به­عنوان عامل پلیمریزاسیون بر حساسیت پاسخ دز ژل پلیمر  MAGIC-fتحت تابش پرتوهای گاما با انرژی 25/1 مگا­الکترون­ولت حاصل از چشمه کبالت - 60 است. برای بررسی میزان پلیمریزاسیون وابسته به دز، پارامترهای فراصوتی سرعت انتشار صوت و ضریب تضعیف امواج ارزیابی شد. برای خوانش میزان پلیمریزاسیون ژل ناشی از تابش، پارامترهای فراصوتی سرعت انتشار صوت و ضریب تضعیف موج صوتی قبل از تابش و بعد از پرتودهی در دز جذبی 36 گری با استفاده از روش عبوری امواج فراصوتی در فرکانس 5/0 مگاهرتز 24 ساعت پس ازتابش و در دمای خوانش 25 درجه سانتی‌­گراد به­دست آمد. برای بررسی اثر غلظت ژلاتین بر پلیمریزاسیون ژل، حساسیت ژل پلیمر  MAGIC-fدر غلظت‌های مختلف ژلاتین از 4 تا 20 درصد با گام­های 2 درصد بررسی شد. برای تعیین غلظت ژلاتین با حداکثر حساسیت پاسخ دز، از t-test استفاده شد. پاسخ دزیمترهای پلیمر ژل MAGIC-f، با افزایش غلظت ژلاتین تا 14 درصد افزایش یافت و بعد از آن به حالت اشباع رسید. بیش­ترین اختلاف سرعت و ضریب تضعیف مطلق مربوط به غلظت 14 درصد ژلاتین قبل و بعد از پرتودهی 36 گری به ترتیب ،m.s-1 7/1±9/21 و dB.MHz-1.cm-1 7/4± 6/49 حاصل شد (عدد P < /span> کم­تر از 05/0). حساسیت دزیمترهای بر پایه متاآکریلیک اسید به غلظت ژلاتین بستگی دارد. در این مطالعه غلظت 14 درصد ژلاتین بیش­ترین پلیمریزاسیون را نشان داد. به علاوه ژلاتین خوراکی می­تواند جایگزین ژلاتین‌های تجاری شود. امواج فراصوت این توانایی را دارد که به­عنوان یک روش خوانش برای دزیمترهای پلیمر ژل مطرح شود.

کلیدواژه‌ها


عنوان مقاله [English]

The gelatin concentration effect onultrasonic characterization of MAGIC-f polymer gel in 36 Gy absorbed dose

نویسندگان [English]

  • Neda Goharpay 1
  • Manijhe mokhtari 1
  • Mohsen Bakhshande 2
1
2
چکیده [English]

The aim of this study is to evaluate the effect of edible gelatin concentration as a polymerization agent on MAGIC-f polymer gel dose-response sensitivity irradiated by 1.25 MeV energy of cobalt-60. To investigate the dose-dependent polymerization, ultrasonic parameters of propagation speed of sound and broadband ultrasound attenuation coefficient were evaluated. To read-out of the radiation-induced polymerization of gel, ultrasonic parameters of speed of sound and broadband ultrasound attenuation coefficient before and after irradiation in 36 Gy absorbed dose were obtained using ultrasonic wave transmission technique at a frequency of 0.5 MHz, 24 hours after irradiation at 25 read-out temperature. To evaluate the gelatin concentration effect on gel polymerization, MAGIC-f polymer gel sensitivity were investigated in different concentrations of gelatin from 4 to 20 percent in steps of 2. The gelatin concentration with a maximum sensitivity of ultrasonic at dose of 36 Gy was determined utilizing t-test analysis. MAGIC-f polymer gel dosimeters response was optimized at 14 percent gelatin concentration, beyond which saturation happens. The most difference in absolute speed of sound and broadband ultrasound attenuation coefficient is related to 14% gelatin concentration, before and after 36 Gy irradiation was observed to be 21.9 ±1.7 m.s-1 and 49.6 ± 4/7 dB.MHz-1.cm-1, respectively (P <0.05). The sensitivity of dosimeters based on methacrylic acid depends on the gelatin concentration. In this study, 14% gelatin concentration showed the most polymerization. In addition, edible gelatin can be considered as an alternative to commercial gelatins. Ultrasound wave has the capability to be used as a readout method for polymer gel dosimeters.

کلیدواژه‌ها [English]

  • Polymer gel
  • MAGIC-f gel
  • Propagation speed of sound
  • Broadband ultrasound attenuation
  • Gelatin concentration
[1] G.S. Ibbott. Clinical applications of gel dosimeters. JPhys. Conf. Ser.56 (2006) 108–131. [2] C.Baldock, Y. De Deene, S. Doran, G. Ibbott, A. Jirasek, M. Lepage, K.B. McAuley, M. Oldham, L.J. Schreiner. Polymer gel dosimetry.Phys. Med. Biol.55 (2010) R1–R63. [3] M.J. Maryanski, J.C. Gore, R.P. Kennan, R.J. Schulz. NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by MRI. Magn. Reson. Imag.11 (1993) 253–258. [4] M.J. Maryanski, Y.Z. Zastavker, J.C. Gore. Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: II. Optical properties of the BANG polymer gel. Phys. Med. Biol. 41 (1996) 2705–2717. [5] M. Hilts, C. Audet, C. Duzenli, A. Jirasek. Polymer gel dosimetry using X-ray computed tomography: a feasibility study. Phys. Med. Biol.44 (2000) 2559–2571. [6] M.L. Mather, A.K. Whittaker, C. Baldock. Ultrasound evaluation of polymer gel dosimeters. Phys. Med. Biol.47 (2002) 1449–1458. [7] C. Baldock. X-ray computer tomography, ultrasound and vibrational spectroscopicevaluation techniques of polymer gel dosimeters. 3th Int ConfRadiotherGel Dosimetry. J. Phys. Conf. Ser.3 (2004) 136-141. [8] Y. De Deene, C. De Wagter. Artifacts in multi-echo T2 imaging for high-precision gel dosimetry: III. Effects of temperature drift during scanning.Phys. Med. Biol.46 (2001)2697–2711. [9] Y. De Deene. Fundamental of MRI measurments in gel dosimetry. J.Phys. Conf. Ser.3 (2004) 87–114. [10] M.L. Mather, Y. De Deene, A.K. Whittaker, G.P.Simon, R. Rutgers, C. Baldock. Investigation of ultrasonic properties of PAG and MAGIC polymer gel dosimeters. Phys. Med. Biol.47 (2003) 4397–4409. [11] T.J. Atkins, V.F. Humphrey, F.A. Duck, M.A. Tooley. Investigation of ultrasonic properties of MAGIC gels for pulse-echo gel dosimetry. 6thInt Conf 3D Rad Dosimetry.1 (2013) 1-5. [12] R.A. Crescenti, J.C. Bamber. Quantitative ultrasonic elastography for gel dosimetry. Ultrasound. Med. Biol.36 (2010) 268–275. [13] R.A. Crescenti, J.C. Bamber, N.L. Bush, S. Webb. Characterization of dose-dependent Young’s modulus for a radiation-sensitive polymer gel. Phys. Med. Biol.54 (2010) 843–85. [14] C. Baldock, R.P. Burford, N. Billingham, G.S. Wagner, S. Patval, R.D. Badawi, S.F. Keevil. Experimental procedure for the manufacture and calibration of polyacrylamide gel (PAG) for magnetic resonance imaging (MRI) radiation dosimetry. Phys. Med. Biol.43 (1998) 695-702. [15] C. Baldock, L. Rintoul, S.F. Keevil, J.M. Pope, G.A. George. Fourier transform Raman spectroscopy of polyacrylamide gel (PAGs) for radiation dosimetry. Phys. Med. Biol.43 (1998) 3617-3627. [16] P.M. Fong, D.C. Keil, M.D. Does, J.C. Gore. Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere. Phys. Med. Biol.46 (2001) 3105–3113. [17] Y. De Deene, K. Vergote1, C. Claeys, C. De Wagter. The fundamental radiation properties of normoxic polymer gel dosimeters: A comparison between a methacrylic acid based gel and acrylamide based gels. Phys. Med. Biol.51 (2006) 653-673. [18] C. Hurley, A. Venning, C. Baldock. A study of a normoxic polymer gel dosimeter comprising methacrylic acid, gelatin and tetrakis (hydroxymethyl) phosphonium chloride (MAGAT). Appl. Radiat. Isot.63 (2005) 443–456. [19] J.J. Luci, H.M. Whitney, J.C. Gore. Optimization of MAGIC gel formulation for three-dimensional radiation therapy dosimetry. Phys. Med. Biol.52 (2007) N241–N248. [20] K. Adinehvand, M.H. Zahmatkesh, M.R. Aghamiri, Sh. Akhlaghpour, S. Bagheri. Verification of dose rate and energy dependence of MAGICA polymer gel dosimeter with electron beams. Iran. J. Radiat. Res.6 (2008) 31-36. [21]J.P. Fernandes, B.F. Pastorello, D.B. Araujo, O. Baffa. Formaldehyde increases MAGIC gel dosimeter melting point and sensitivity. Phys. Med. Biol.53 (2008) N53–N58. [22] S. Hayashi, M. Yoshioka, S. Usui, K. Haneda, T. Kondo, K. McAuley, T. Tominaga. A study on the role of gelatin in methacrylic-acid-based gel dosimeters. Rad.Phys.Chem. 79 (2010) 803–808. [23] S.J. Cho, S. Lim, S. Lee, S.H. Lee, H.D. Huh, K.H. Cho, J. Jang, J.H. Choi, D.O. Shin, S.I. Kwon, H.G. Yun. A study on the characteristic of normoxic polymer gel dosimeter according to its composition. J. Phys. Conf. Ser.164 (2009)1-4. [24] H. Masoumi, M. Mokhtari-Dizaji, A. Arbabi, M. Bakhshandeh. The ability of ultrasonic characterization to extract the dose distribution of MAGIC-f polymer gel. J. Kerman University. Med. Sci.22 (2015) 394-409. [25] M. Mokhtari. Tissue-mimicking materials for teaching sonographersand evaluation of their specifications after three years. Ultrasound. Med. Biol.27 (2001) 1713–1716. [26] M.L. Mather, A.F. Collings, N. Bajenov, A.K. Whittaker, C. Baldock. Ultrasonic absorption in polymer gel dosimeters. Ultrasonics.41 (2003)551-559. [27] M.L. Mather, P. Charles, C. Baldock. Measurement of ultrasonic attenuation coefficient in polymer gel dosimeters. Phys. Med. Biol.48 (2003) N269-N275. [28] H. Masoumi, M. Mokhtari-Dizaji, A. Arbabi, M. Bakhshandeh. Determine the dose distribution using ultrasound parameters in MAGIC-f polymer gels. Dose Response. (2016) 1-7.