ارزیابی خطاهای انسانی اپراتورهای اتاق کنترل یک رآکتور تحقیقاتی 5 مگاواتی با استفاده از روش رویکرد قاعده‌مند پیش‌بینی و کاهش خطای انسانی (SHERPA)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی هسته‌ای، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 پژوهشگاه علوم و فنون هسته ای، پژوهشکده رآکتور و ایمنی هسته ای، تهران ایران

10.22052/rsm.2025.255166.1074

چکیده

عامل انسانی اصلی‌­ترین نقش را در بروز حوادث دارد. یکی از سیستم­هایی که بروز انسانی خطاهای در آن می­تواند به حادثه‌­ای فاجعه‌بار منتهی شود رآکتورهای هسته­ای است. این مقاله با هدف بررسی ارتباط بین حوادث و خطاهای انسانی و فرآیندی اتاق کنترل یک رآکتور تحقیقاتی 5 مگاواتی از نوع استخری انجام شده است. پس از مصاحبه با اپراتورهای اتاق کنترل، شغل‌­ها مشخص و با روش سلسله مراتبی وظایف، تجزیه و تحلیل شدند. با استفاده از روش SHERPA خطاهای انسانی در اتاق کنترل مورد بررسی قرار گرفتند. یافته­‌ها نشان دادند که بیشترین مورد خطا مربوط به درک و تشخیص وضعیت بوده و مشاهده و جمع­‌آوری اطلاعات در رده دوم قرار گرفته است. به‌منظور کاهش خطای انسانی، بهبود عملکرد پرسنل و جلوگیری از بروز خطای ناشی از عوامل انسانی، راه­کارهای کنترلی از جمله دستورالعمل­‌های کاری مناسب، ارتقاء کیفیت آموزش پرسنل و رعایت ضوابط و مقررات ایمنی پیشنهاد می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

The evaluation of control room operator errors in a 5 MW research reactor using Systematic Human Error Reduction and Prediction Approach (SHERPA)

نویسندگان [English]

  • Kobra Harandeh 1
  • Mohsen kheradmand-Saadi 1
  • Ehsan Zarifi 2
1 Islamic Azad University, Science and Research Branch, Tehran, Iran
2 Nuclear Science and Technology Institute, Nuclear Reactor and Safety school, Tehran, Iran
چکیده [English]

Human factor plays the most important role in the occurrence of accidents. One of the systems in which human errors can lead to a catastrophic accident is nuclear reactors. This article aims to investigate the relationship between accidents and human errors in a control room of a 5 MW pool type research reactor. After performing the interview with operators of the control room, the duties were identified and analyzed by the task hierarchy technique. Human errors in the control room were investigated using SHERPA method. Results showed that the most repeated errors were related to misunderstanding and misrecognizing the situation whilst inability to observe and collect useful information were in the second place. In order to reduce human errors, improve employee performance and prevent errors caused by human factors, control solutions are proposed. This includes appropriate work instructions, improving the quality of employee training and compliance with safety rules and regulations.

کلیدواژه‌ها [English]

  • Human Error
  • SHERPA technique
  • control room
  • research reactor
  1. S. Dekker. The Field Guide to Understanding ‘Human Error’. CRC Press: Boca Raton, FL, USA, 2017.
  2. D. Petersen. Human-Error Reduction and Safety Management. 3rd. Ed. John Wiley & Sons, New York, 1984.
  3. R. A. Klein. Risk assessment and firefighter safety. Patterns of injury in the UK- the UK and USA compared. Fire Eng. J. 61 (2001) 15-18.
  4. N. Meshkati. Human factors in large-scale technological systems' accidents: Three Mile Island, Bhopal, Chernobyl. Org. Environ. 5 (2) (1991) 133-154.
  5. E. Stojiljković, M. Grozdanović. Framework for Human Error Quantification. Facta Uni. Phil. Soc. Psy. His .5 (1) (2006) 131-144.
  6. J. Reason. Human error: models and management. British Med. J. 320 (7237) (2000) 768-770.
  7. B. Zimolong, G. Elke. Occupational health and safety management. In: Salvendy, G. (ed.) Handbook of Human Factors and Ergonomics. pp. 673–707. Wiley, New York, 2006.
  8. B. S. Dhillon. editor. Modeling human errors in repairable systems. Annual Reliability and Maintainability Symposium. Atlanta, GA, USA, 1989.
  9. S. T. Shorrock, B. Kirwan. Development and application of a human error identification tool for air traffic control. Appl. Ergon. 33 (4) (2002) 319-336.
  10. B. Kirwan, R. Kennedy, S. Taylor-Adams, B. Lambert. The validation of three Human Reliability Quantification techniques—THERP, HEART and JHEDI: Part II—Results of validation exercise. Appl. Ergon. 28 (1) (1997) 17-25.
  11. D. Embrey. Task Analysis Techniques. Human Reliability Associates Ltd. 2000.
  12. P. Salmon, N. A. Stanton, M. S. Young, D. Harris, J. Demagalski, A. Marshall, T. Waldman, S. Dekker. Using existing HEI techniques to predict pilot error: A comparison of SHERPA, HAZOP and HEIST. Proc. British Comput. Soc. Conf. Human-Computer Interaction (BCS-HCI), 2002.
  13. J. Rasmussen, M. Annelise, L. P. Pejtersen. Goodstein Cognitive Systems Engineering. Wiley, New York. 1994.
  14. J. L. Clark. The Management Oversight and Risk Tree (MORT): a new system safety program. ICMA (2014) 17 p.
  15. D. Piccione, G. M. Hewitt. FAA Human Factors Workbench. Proc. Human Factors Ergon. Soc. Ann. Meet. 2004.
  16. T. B. Sheridan. Human Error in Nuclear Power Plants, Technology Review. IAEA (1980) 22-23.
  17. W. G. Stillwell, D. A. Seaver, J. P. Schwartz. Expert estimation of human error probabilities in nuclear power plant operations: A review of probability assessment and scaling (NUREG/CR-2255, SAND81-7140). Falls Church, VA: Decision Science Consortium, Inc., 1982.
  18. M. Farcasiu, M. Nitoi, M. Apostol, I. Turcu, G. Florescu.The recovery factors analysis of the human errors for research reactors. 12th Int. ICIT Conf. Prog. Cryogenics Isotopes Separation. Proc. 2006.
  19. A. Anvari, L. Safarzadeh, Assessment of molybdenum powder discharge from Tehran research reactor due to a human error. J. Radiat. Safety Measurement. 1 (1) (2013) 9-14.
  20. R. Barati, S. Setayeshi, On the operator action analysis to reduce operational risk in research reactors. Proc. Safety Environ. Protect. 92 (6) (2014) 789-795.
  21. F. Mohamed, A. Hassan, R. Yahaya, I. Rahman, Operator reliability study for Probabilistic Safety Analysis of an operating research reactor. Ann. Nucl. Energy. 80 (2015) 409-415.
  22. A. Hassan, M. Maskin, P. P. Tom, F. Brayon, P. Hlavac, Operator response modeling and human error probability in TRIGA Mark II research reactor probabilistic safety assessment. Ann. Nucl. Energy. 102 (2017) 179-189.
  23. A. Hassan, F. Mohamed, M. Maskin, Research reactor operator performance based on the human error assessment and reduction technique (HEART). IOP Conf. Ser. 2020.
  24. W. Vechgama, K. Silva, A. Pechrak. Application of Hazard and Operability Technique to Level 1 Probabilistic Safety Assessment of Thai Research Reactor-1/Modification 1: Internal Events and Human Errors. Prog. Nucl. Energy. 138 (2021) 103838.
  25. D. E. Embrey, SHERPA: A Systematic Human Erroe Reduction and Prediction Approach. Int. Top. Meet. Adv. Human Factors Nucl. Power Sys. 1986.
  26. J. Pallant, SPSS Survival Manual, A step by step guide to data analysis using. IBM SPSS, 2020.
  27.  AEOI. Safety Analysis Report for Tehran Research Reactor. Atomic Energy Organization of Iran, 2009.
  28. B. Mullen, C. Copper. The relation between group cohesiveness and performance. An Integration. Psychological Bull. 115 (1994) 210-227.
  29. M. Hoegl, H. G. Gemuenden. Teamwork quality and the success of innovative projects: a theoretical concept and empirical evidence. Organization Sci. 12 (2001) 435-449.
  30. G. C. Homans. The Human Group. Harcourt. Brace. Jovanovich, Inc. New York, 1950.
  31. P. V. Crosbie. Interactions in Small Group. Macmillan Publishing Co., New York, 1975.
  32. H. L. Nixon. The Small Group. Prentice-Hall Series in Sociology. New York, 1979.
  33. L. Rognin, J. P. Blanquart. Human communication, mutual awareness and system dependability. Lesson learnt from air-traffic control field studies. Reliability Eng. Sys. Safety 71 (3) (2001) 327-336.
  34. C. R. Paris, E. Salas, J. A. Cannon Bowers. Teamwork in multi-person systems. Ergonomics 43 (2000) 1052-1075.
  35. L. L. Paglis, S. G. Green. Leadership self-efficacy and managers’ motivation for leading change. J. Org. Beh. 23 (2002) 215–235.
  36. Y. H. L. Chang, A. Mosleh. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 2: IDAC performance influencing factors model. Reliability Eng. Sys. Safety. 92 (2007) 1014-1040.
  37. C. D. Wickens. Processing resources and attention. Multipletask performance and workload performance. Defense Technical Information Center. 1981.
  38. S. Kariuki, K. Löwe. Integrating human factors into process hazard analysis. Reliability Eng. Sys. Safety 92 (12) (2007) 1764-1773.
  39. B. Kirwan. A Guide to Practical Human Reliability Assessment. Taylor and Francis,  London, 1994.
  40. C. J. Lin, T. C. Yenn, Y. T. Jou, T. L. Hsieh, C. W. Yang. Analyzing the staffing and workload in the main control room of the advanced nuclear power plant from the human information processing perspective. Safety Sci. 57 (2013) 161-168.
  41. G. A. Shirali, A. Dibeh Khosravi, T. Hosseinzadeh, A. Fathi, M. Hame Rezaee, M. Hamzeiyan Ziariani. Using the human information-processing model and workload to predict staffing demand: A case study in a petrochemical control room. J. Ergonomics 2 (3) (2014) 70-76.