اندازه گیری ضریب انباشت شار پرتوهای گامای چشمه های سزیم و کبالت در فلزات آلومینیوم، مس و سرب به عنوان ماده محافظ

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فیزیک و مهندسی هسته‌ای، دانشگاه صنعتی شاهرود، شاهرود، سمنان، ایران

چکیده

در این تحقیق از فلزات آلومینیوم، مس و سرب به‌عنوان مواد محافظ در برابر پرتوهای گاما در انرژی­‌های MeV 662/0، MeV 173/1،  MeV 332/1 استفاده شده است. هر چه انرژی اشعه گاما بیشتر باشد، آسیب بیشتری به بافت انسان می­‌زند. سرب یک ماده سمی است و از طرفی چگالی آن زیاد است؛ ولی آلومینیوم یک ماده غیرسمی است و چگالی آن نسبت به مس و سرب کمتر است. در هنگام ساخت لباس برای محافظت در برابر اشعه مضر هرچه وزن لباس کمتر باشد بهتر است؛ زیرا پرسنلی که از چنین لباس­‌هایی استفاده می‌­کنند، کمتر خسته می‌­شوند. در گستره­ای از انرژی پرتوهای گاما اثر تضعیف آلومینیوم و سرب با یکدیگر تقریباً برابر است و از طرفی چون آلومینیوم نسبت به سرب سبک‌تر است می­توان از حفاظ ترکیبی آلومینیوم و سرب استفاده نمود که منجر به سبک‌شدن حفاظ می‌­گردد. در واقع پرتوهای گاما در این گستره انرژی ابتدا با پراکندگی‌های کامپتون متوالی به ناحیه انرژی پایین منتقل می‌­شوند و اگر همچنان از ماده خارج نشده باشند، در اتم‌‌های سرب جذب می­گردند؛ بنابراین حفاظ ترکیبی منجر به کاهش وزن قابل‌توجه می‌­گردد. در این تحقیق داده­های تجربی و شبیه‌­سازی با هم مقایسه شده است و مطابقت خوبی با هم دارند. در محاسبه داده­های شبیه‌سازی از کد MCNPX استفاده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Measuring the buildup factor of gamma rays flux of cesium and cobalt sources in aluminum, copper and lead metals as protective material

نویسندگان [English]

  • Ammar Vahedian Movahed
  • Hossein Tavakoli-Anbaran
Faculty of Physics and Nuclear Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

In this research, aluminum, copper, and lead metals have been used as protective materials against gamma rays at energies of 0.662 MeV, 1.173 MeV, 1.332 MeV. the higher the gamma ray energy, the more damage it causes to human tissue. Lead is a toxic substance and its density is high, but aluminum is a non-toxic substance and its density is lower than copper and lead. When making clothing to protect against harmful radiation, the lower the weight of the clothing , the better because the personnel who use such clothing are less tired. In a range of gamma ray energy, the attenuation effect of aluminum and lead is almost equal to each other, and on the other hand, since aluminum is lighter than lead, it is possible to use a combined shield of aluminum and lead, which leads to a lighter shield. in fact, gamma rays in this energy range are first transferred to the low energy region by successive Compton scatterings, and if they have not yet exited the material, lead atoms are absorbed. Therefore, the comined protection leads to significant weight reduction. In this research, experimental and simulation data have been compared and they are in good agreement. MCNPX code is used to calculate the simulation data.

کلیدواژه‌ها [English]

  • buildup factor
  • gamma ray
  • protection
  • cesium source
  • cobalt source
  1. M. I. Sayyed. Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions. J. Alloy. Compd. 695 (2017) 3191-3197.
  2. P. Aim-O, D. Wongsawaeng, S. Tancharakorn and Sophon. Buildup factor and mechanical properties of high-density cement mixed with crumb rubber and prompt gamma ray study. Mater. Sci. Eng. 244 (2017) 012023.
  3. K. Trontl, T. muc, D. Pevec. Support vector regression model for the estimation of -ray buildup factors for multi-layer shields. Ann. Nucl. Energy 34 (2007) 939-952.
  4. K. Takeuchi, S. Tanaka. Absorbed-dose and dose-equivalent buildup factors of gamma rays including bremsstrahlung and annihilation radiation for water, concrete, iron and lead. Appl. Radiat. Isot. 37 (1986) 283-296.
  5. M. M. Rafiei, H. Tavakoli-Anbaran. Calculation of the exposure buildup factors for X-ray photons with continuous energy spectrum by monte carlo code. J Radiol Prot. 38 (2018) 207.
  6. S. Yonphan, P. Limkitjaroenporn, P. Borisut, S. Kothan, N. Wongdamnern, Abdullah M. S. Alhuthali, M. I. Sayyed, J. Kaewkhao. The photon interactions and build-up factor for gadolinium sodium borate glass: theoretical experimental approaches. Radiat. Phys. Chem. 188 (2021) 109561.
  7. I. Jarrah, M. I. Radaideh, T. Kozlowski, R. Uddin. Determination and validation of photon energy absorption buildup factor in human tissues using monte carlo simulation. Radiat. Phys. Chem.160 (2019) 15-25.
  8. S. Singh, A. Kumar, C. Singh, K. Singh Thind, G. S. Mudahar. Effect of finite sample dimensioms and total scatter acceptance angle on the gamma ray buildup factor. Ann. Nucl. Energy 35 (2008) 2414-2416.
  9. N. EkĪncĪ, E. Kavaz, Y. ÖzdemĪr. A study of The energy absorption and exposure buildup factors of some anti-inflammatory drugs. Appl. Radiat. Isotopes. 90 (2014) 265-273.
  10. E. Kavaz, N. Ahmadishadbad, Y. Özdemir . Photon buildup factors of some chemotherapy drugs. Biomed. Pharmacotherapy 69 (2015) 34-41.
  11. O. Kilicoglu, H. O. Tekin. Bioactive glasses with additive: Behavior characterization against nuclear radiation and determination of buildup factors. Ceram. Int. 46 (2019) 10779-10787.
  12. M. I. Sayyed, H. Elhouichet. Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite glasses. Radiat. Phys. Chem.130 (2017) 335-342.
  13. S. S. Obaid, M.I. Sayyed, D.K. Gaikwad, P. P. Pawar. Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 148 (2018) 86-94.
  14. K. A. Mahmoud, F. I. El-Agwany, Y. S. Rammah, O. L. Tashlykov. Gamma ray shielding capacity and build up factors of CdO doped lithium borate glasses: theoretical and simulation study. J. non-crysta. solids 541 (2020) 120110.
  15. M. M. Alda'ajeh, J. M.sharaf, H. H.Saleh, Mefleh S. Hamideen. Determination of buildup factors for some human tissues using both MCNP5 and Phy-X/PSD. Nucl. Eng. Tech. 55 (2023) 4426-4430.
  16. N. Sabry, H. Y. Zahran, E. S. Yousef, H. Algami, A. Umar, H. B. Albargi, I.S. Yahia. Gamma-ray attenuation, fast neutron removal cross-section and build up factor of semiconductor compounds: Novel approach. Radiat. Phys. Chem. 179 (2021) 109248.
  17. K. Singh Mann. Measurement of exposure buildup factors: The influence of scattered photons on gamma-ray attenuation coefficients. Nucl. Instrum. Meth. A. 877 (2018) 1-8.
  18. V. Pathak. To study buildup factor in concrete. Neuroquantology 20 (2022) 4217-4226.
  19. P. S. Singh, T. Singh, P. Kaur. Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents. Ann. Nucl. Energy 35 (2008) 1093-1097.
  20. H. Alavian, H. Tavakoli-Anbaran. Investigating the effect and type of detector on the estimation of gamma ray buildup factors using monte carlo simulation based on variance reduction. J. Radiat. Safety Mesurement 4 (2018) 65-79.
  21. K. Singh Mann, J. Singla, V. Kumar, G. Singh Sidhu. Investigations of mass attenuation coefficients and expousure buildup factors of some low-z building materials. Ann. Nucl. Energy 43 (2012) 157-166.
  22. K. Singh Mann, T. Korkut. Gamma-ray buildup factors study for deep penetration in some silicates. Ann. Nucl. Energy 51 (2013) 81-93.
  23. N. Kucuk. Computation of gamma-ray exposure buildup factors up to 10 mfp using generalized feed-forward neural network. Expert Sys. Appl. 37 (2010) 3762-3767.
  24. E. Kavaz, N. Y ld z Yorgun. Gamma ray buildup factors of lithium borate glasses doped with minerals. J. Alloys Compounds 752 (2018) 61-67.
  25. G. S. Brar, G. S. Sidhu, Parjit, S. sandhu , Gurmel S. Mudahar. Variation of buildup factors of soils with weight fractions of iron and silicon. Appl. Radiat. Isot. 49 (1998) 977-980.
  26. A. Shirani, M. H. Alamatsaz. Calculation of expousure buildup factors for point isotropic gamma ray sources in stratified spherical shields of water surrounded by lead and optimization of water-lead combination. Iran. J. Sci. 37 (1) (2013) 29-34.
  27. N. Tsoulfanidis. Measurement and Detection of Radiation. Edition, Taylor & Francis, 2010.
  28. H. Akyildirim, F. Waheed, K. G no lu , Akkurt. Investigation of buildup factor in gamma-ray measurement. Acta Phys. Polonica A. 132 (2017) 1203-1206.
  29. L. musÍlek, T. čech k , J. šeda. Empirical formulae for buid-up factor caculations in wide conical -Ray beams. Int. J. Appl. Radiat. Isot. 31 (1980) 623-627.
  30. L. musÍlek, T. čech k , J. šeda. The use of the monte carlo method for the calculation of build-up factors in wide conical gamma-radiation beams. Nucl. Instrum. Methods 174 (1980) 565-569.
  31. A. Rasouli, H. Tavakoli-Anbaran. Study of relation between the gamma flux buildup factors and source geometry by M-C simulation. Nucl. Sci. Tech. 28 (2017) 136-140.
  32. M. M. Rafiei, H. Tavakoli-Anbaran. Study of exposure buildup factors with detailed physics for cobalt-60 gamma source in water, iron, and lead using the MCNPX code. European Phys. J. Plus 133 (2018) 548-553.
  33. M. M. Rafiei, H. Tavakoli-Anbaran. Calculation of buildup factors of gamma source with continuous energy spectrum for water, iron and lead by monte carlo code. J. Radiat. Safety Mesurement 6 (2018) 25-32.
  34. A. Rasouli, H. Tavakoli-Anbaran. Investigation the location and alighnment of the detector to minimize the gamma ray flux buildup factor. J. Radiat. Safety Mesurement 4 (2016) 1-10.
  35. M. R. Skandarinia. Simulation the Response Function of CsI Detector Using Monte Carlo Method in the Energy Range from 1 KeV to 1.5 MeV and its use for the Unfolding Unknown Gamma-Ray Source Spectrum. M. Sc. Thesis, Shahrood University of Technology, 2016.
  36. M. Kurudirek, Y. Kurucu. Estimation of energy absorption buildup factors of some human tissues at energies relevant to brachytherapy and external beam radiotherapy. Int. J. Radiat. Biol. 95 (2019) 1685-1695.
  37. Available at: https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html