ارزیابی محاسباتی پرتودهی یوروپیم طبیعی جهت مقیاس‌بندی آشکارساز HPGe با استفاده از نرم افزار MATLAB

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشکده علوم پایه، دانشگاه قم، قم، ایران

2 پژوهشکده چرخه سوخت هسته‌ای. پژوهشگاه علوم و فنون هسته‌ای. تهران. ایران

3 پژوهشکده راکتور و ایمنی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، تهران، ایران

10.22052/rsm.2024.255163.1073

چکیده

به منظور طیف‌سنجی گاما جهت شناسایی نمونه‌ها با ترکیب ناشناخته، ابتدا باید مقیاس‌بندی انرژی آن با استفاده از چشمه­ مشخص کالیبره گردد. هسته‌های پرتوزا گسیل‌کننده پرتوهای گاما با انرژی‌های مشخص در مقیاس‌بندی آشکارساز HPGe برای طیف‌سنجی گاما مورد استفاده قرار می‌گیرند. در این میان هسته‌های پرتوزا یوروپیم-152 و یوروپیم-154 به‌دلیل داشتن ویژگی‌هایی همچون گستره‌ی انرژی مناسب و نیمه عمر طولانی، می‌توانند به‌عنوان گزینه‌ مناسبی برای مقیاس‌بندی انرژی آشکارساز HPGe مورد استفاده قرار گیرند. این هسته‌های پرتوزا را می‌توان از روش مستقیم با پرتودهی یوروپیم طبیعی تولید کرد. به‌منظور جلوگیری از آلودگی محیط زیست، انتشار مواد پرتوزا و همچنین کاهش هزینه‌های مصرفی، قبل از پرتودهی نمونه و تولید، فرایند بهینه سازی و ارزیابی محصولات تولیدی محتمل، صورت می­گیرد تا خروجی با بهترین بازده و عملکرد به‌دست آید. بدین منظور در این مطالعه به محاسبه نظری از طریق حل معادلات دیفرانسیلی زنجیره‌های واپاشی یوروپیم طبیعی با استفاده از نرم افزار متلب پرداخته شد. در این مطالعه مقدار فعالیت‌ محصولات اصلی و ناخالصی‌های تولید شده ناشی از پرتودهی 1 میلی‌گرم یوروپیم طبیعی برای مدت زمان پرتودهی 7 روز و خنک‌سازی 30 روز، مورد تحلیل و بررسی قرار گرفت. نتایج نشان دادند که درصد ناخالصی‌های تولیدشده نسبت به محصولات اصلی در پایان فرایند خنک‌سازی در حدود 1 درصد است که مقدار ناچیز و قابل چشم‌پوشی است.

کلیدواژه‌ها


عنوان مقاله [English]

Computational evaluation of natural europium irradiation for HPGe detector calibration using MATLAB software

نویسندگان [English]

  • Mahdiyeh Mahabadi 1
  • Hassan Ranjbar 2
  • Seyedeh Zahra Islami-Rad 1
  • Ehsan Boustani 3
1 Department of Physics, Faculty of Science, University of Qom, Qom, Iran
2 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
3 Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
چکیده [English]

In order to use gamma spectroscopy to identify samples with unknown composition, its energy scale must first be calibrated using a specific source. Radionuclides with specific gamma ray energies are commonly used in HPGe detector calibration for gamma spectroscopy. In the meantime, europium-152 and europium-154 radionuclides can be used as a suitable option for HPGe detector energy calibration due to their characteristics such as suitable energy range and long half-life. These radionuclides can be produced through a direct method by irradiating natural europium. In order to prevent environmental pollution, the release of radioactive substances and also to reduce consumption costs, before irradiating the sample and production, the process of optimization and evaluation of possible production products is carried out in order to obtain the output with the best efficiency and performance. For this purpose, in this study, the theoretical calculation was done by solving the differential equations of natural europium decay chains using MATLAB software. In this study, the amount of activity of the main products and the impurities produced due to the irradiation of 1 mg of natural Europium for the duration of irradiation of 7 days and cooling for 30 days was analyzed and investigated. The results showed that the percentage of produced impurities compared to the main products at the end of the cooling process is about 1%, which is insignificant and can be ignored.

کلیدواژه‌ها [English]

  • natural europium
  • HPGe detector
  • impurity
  • MATLAB software
  1. م. معینی فر، ا. شیرانی، خ. رحمانی. تعیین لایه مرده و بازده قله تمام-انرژی آشکارساز HPGe با استفاده از کد MCNP و نتایج تجربی. پژوهش فیزیک ایران. 16 (4) (1395) 381-375.
  2. ح. رنجبر، ع. یوسفی. ارزیابی عدم قطعیت در اندازه‌گیری سزیم-137 موجود در آب با طیف سنجی گاما. مجله علوم و فنون هسته ای. 40 (4) (1398) 42-37.
  3. S. F. Taheri, A. Shirani. Determination of virtual point for HPGe detector at various gamma rays energies by simulation and experimental methods. J. Radiat. Safety Measurement 9 (4) (2020) 171-178.
  4. N. Tsoulfanidis. Measurement and Detection of Radiation. 2nd Ed. Taylor & Francis, New York, 1995.
  5. A. Barba-Lobo, E. G. San Miguel, R. L. Lozano, J. P. Bolívar. A general methodology to determine natural radionuclides by well-type HPGe detectors. Measurement 181 (2021) 109561.
  6. A. Luca, B. Neacsu, A. Antohe, M. Sahagia. Calibration of the high and low resolution gamma-ray spectrometers. Rom. Rep. Phys. 64 (4) (2012) 968-976.
  7. N. Hafızoğlu. Efficiency and energy resolution of gamma spectrometry system with HPGe detector depending on variable source-to-detector distances. Eur. Phys. J. Plus. 139 (2024) 134.
  8. B.-L. Yang, Q. Zhou, J. Zhang, S.-M. Yao, Z.-S. Li, W.-H. Li, F. Tuo. Performances of different efficiency calibration methods of high-purity-germanium gamma-ray spectrometry in an inter-comparison exercise. Nucl. Sci. Tech. 30 (3) (2019) 37.
  9. D. Testov. Energy calibration of HPGe detector using the high-energy characteristic γ rays in 13C formed in 6Li+ 12C reaction. Nucl. Sci. Tech. 31 (5) (2020) 57-63.
  10. H. Yücel, S. Zümrüt, R. B. Narttürk, G. Gedik. Efficiency calibration of a coaxial HPGe detector-Marinelli beaker geometry using an 152Eu source prepared in epoxy matrix and its validation by efficiency transfer method. Nucl. Eng. Tech. 51 (2) (2019) 526-532.
  11. A. El Abd, M. Mostafa, M. A. El-Amir. Production of 152,154Eu mixed sources for calibrations of gamma-ray spectrometers. J. Radioanalytical Nucl. Chem. 293 (1) (2012) 255-260.
  12. M. Pazoki, H. Jafari, Z. Gholamzadeh. Studying the effect of backgrounds on the determination of radiative thermal neutron capture cross-section in the neutron powder diffraction facility of the Tehran research reactor. Radiat. Phys. Eng. 4 (2) (2023) 9-17.
  13. ن. سالک، م. شمسایی، س. شیروانی، ع. بهرامی سامانی، م. قنادی مراغه. تولید هسته‌ی پرتوزای لوتسیم بدون حامل افزوده با پرتودهی هدف طبیعی و غنی شده در رآکتور تحقیقاتی تهران برای مقاصد پزشکی هسته‌ای. مجله علوم و فنون هسته‌ای. 37 (3) (1395) 8-1.
  14. S. Sheibani, H. Pourbeigi, Y. H. Tavakoli, M. Keyvani. Production and evaluation of 186Re radionuclide in the Tehran Research Reactor for therapeutic applications. J. Nucl. Sci. Tech (JonSat). (2010) 31 (1) 58-62.
  15. م. شریفی، ح. یوسف نیا، ع. بهرامی سامانی، ا. جلیلیان، س. ذوالقدری، م. قنادی مراغه. مطالعه نظری و تجربی تولید رادیونوکلید درمانی تربیم-161 در رآکتور تحقیقاتی تهران. مجله علوم و فنون هسته‌ای. 35 (4) (1393) 44-37.
  16. س. ا. حسینی، م. قنادی مراغه، ع. بهرامی سامانی، س. شیروانی، ح. صالحی. امکان‌سنجی تولید رادیونوکلید صنعتی پرومتیم-147 به روش پرتودهی نوترونی نئودیمیم در رآکتور تحقیقاتی تهران. مجله علوم و فنون هسته‌ای. 41 (1) (1399) 31-25.
  17. P. Tahavori, H. Ranjbar, S. M. R. Aghamiri, S. Shirvani. Optimization of natural cerium irradiation time and cooling time to produce new therapeutic radionuclide. J. Radiat. Safety Measurement 10 (1) (2022) 37-44
  18. ز. پورحبیب، ح. رنجبر، ع بهرامی سامانی، ع. شکری. ارزیابی خلوص رادیونوکلئیدی رنیوم-186 و 188 تولید شده از پرتودهی رنیوم طبیعی. مجله علوم و فنون هسته‌ای. 41 (3) (1399) 52-45.