برآورد دز موثر در تابش‌گیری‌های ناشی از حوادث رادیوگرافی صنعتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده علوم، گروه فیزیک، دانشگاه بیرجند، بیرجند، ایران

2 مرکز علم و تکنولوژی، بدخشان، افغانستان

چکیده

برآورد سریع توزیع دز در قربانیان حوادث رادیوگرافی صنعتی، حائز اهمیت است. به این منظور، در اختیار داشتن کتابخانه­‌ای از داده­‌های دز مؤثر و دز جذبی برای استفاده در شرایط بحرانی، می­تواند مؤثر واقع شود. در این مطالعه دز مؤثر کل بدن، برای دو چشمه پرکاربرد در رادیوگرافی صنعتی Ir192 و Co60 با استفاده از کد مونت کارلوی MCNPX و فانتوم وکسل مرد بزرگسال ICRP برآورد شده است. شبیه‌سازی‌­ها در 4 هندسه تابشی قدامی-خلفی،خلفی-قدامی، راست و چپ جانبی و 5 ارتفاع مختلف چشمه شامل؛ کف زمین، وسط ران پا، انتهای تنه، وسط تنه و بالای تنه در نزدیکی گردن­ صورت گرفته است. نتایج این مطالعه نشان می‌­دهد که دز مؤثر در تمامی ارتفاع‌­ها به‌جز در کف زمین از فاصله cm100 به بعد مستقل از ارتفاع چشمه و تقریباً  یکسان است­. بیشترین و کمترین مقدار دز مؤثر، به‌ترتیب مربوط به هندسه تابشی قدامی-خلفی و راست جانبی است. مقدار دز مؤثر در ارتفاع وسط تنه در هندسه قدامی-خلفی و در فاصله cm 5/0 در مقایسه با ارتفاع وسط ران پا و کف زمین به‌ترتیب 5 و 200 برابر بیشتر برای هر دو چشمه Ir192 و Co60 است. با استفاده از داده‌­های به‌دست آمده در این مطالعه، دز مؤثر قربانی حادثه 1996 گیلان mSv 200 به‌دست آمد. نتایج به‌دست آمده در این مطالعه، با داده‌­های گزارش شده در ICRP  مقایسه و دلایل اختلاف بررسی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Estimating the effective dose from exposures in industrial radiography accidents

نویسندگان [English]

  • Keyhandokht Karimi-Shahri 1
  • Mohammad Allah Shirzad 1 2
1 Physics Department, Faculty of Science, University of Birjand, Birjand, Iran
2 Science and Technology Center, Badakhshan, Afghanistan
چکیده [English]

Fast estimation of dose distribution in victims of industrial radiography accidents is important. Thus having a data library from effective dose and absorbed dose data for use in crucial situations can be effective. In this study, the whole body effective dose for two commonly used industrial radiography sources, 192Ir and 60Co, was evaluated using the MCNPX2.6 Monte Carlo code and the adult male voxel phantom ICRP. Simulations were performed in 4 radiation geometries (AP, PA, RLAT, LLAT) and 5 different source heights including ground, middle thigh, lower torso, middle torso, and upper torso. The results of this study show that the effective dose at all heights at distance greater than 100 cm, except for ground level, is independent of source height and relatively consistent. The highest and lowest values of effective dose are associated with the AP and RLAT radiation geometries, respectively. The effective dose at the middle torso in the AP geometry and at a distance of 0.5 cm is 5 and 200 times higher compared to the middle thigh and ground heights, respectively, for both 192Ir and 60Co sources. Using the data obtained in this study, the effective dose for a victim of a 1996 accident in Gilan was estimated to be 200 mSv. The results of this study were compared with the data reported in ICRP145, and the reasons for the differences were investigated.

کلیدواژه‌ها [English]

  • industrial radiography accidents
  • 60Co and 192Ir radiography sources
  • MCNPX Monte Carlo code
  • effective dose
  1.  C. M. A. Lima, A. R. Lima, Ä. L. Degenhardt, N. J. Valverde, F. C. A. Da Silva. Reconstructive dosimetry for cutaneous radiation syndrome. Braz. J. Med. Biol. 48 (2015) 895-901.
  2. IAEA, Radiation safety in industrial radiography, Safety Standards for protecting people and the environment No. SSG-11, 2011.
  3. L. Cerezo, Radiation accidents and incidents. What do we know about the medical management of acute radiation syndrome? .Rep. Pract. Oncol. Radiother. 16 (2011) 119-122.
  4. E. A. Ainsbury, E. Bakhanova, J. F. Barquinero, M. Brai, V Chumak, V Correcher, F Darroudi, P Fattibene, G Gruel, I Guclu, S Horn, A Jaworska, U Kulka, C Lindholm, D Lloyd, A Longo, M Marrale, O Monteiro Gil, U Oestreicher, J Pajic, B Rakic, H Romm, F Trompier, I Veronese, P Voisin, A Vral, C A Whitehouse, A Wieser, C Woda, A Wojcik, K Rothkamm. Review of retrospective dosimetry techniques for external ionising radiation exposures. Radiat. Prot. Dosim. 147 (4) (2011) 573-592.
  5. M. E. Rea, R. M. Gougelet, R. J. Nicolalde, J. A. Geiling, H. M. Swartz. Proposed triage categories for large-scale radiation incidents using high-accuracy biodosimetry methods. Health. Phys. 98 (2010) 136-144.
  6. X. G. Xu. Computational phantoms for radiation dosimetry: a 40-year history of evolution. In: Handbook of Anatomical Models for Radiation Dosimetry, (X. G. Xu, K. F. Eckerman, Eds.), chapter 1, pp. 3-41, Taylor and Francis, London, 2010.
  7. C. Y. Ting, H. E. Wang, J. P. Lin, C. C. Lin, Evaluating the radiation from accidental exposure during a nondestructive testing event. Health. Phys. 109 (2015) 171-176.
  8. M. S. Rahman, A. Begum, A. Hoque, R. K. Khan, M. M. M. Siraz. Assessment of whole-body occupational radiation exposure in industrial radiography practices in Bangladesh during 2010-2014. Braz. J. Radiat. Sci. 4 (2) (2016)1-17.
  9. S. M. Hosseini Pooya, M. R. Dashtipour, R. Paydar, F. Mianji, B. Pourshahab. A comprehensive dose assessment of irradiated hand by iridium-192 source in industrial radiography. Australas. Phys. Eng. Sci. Med. 40 (2017) 611-616.
  10. E. Massoud. Dose assessment for some industrial gamma sources with an application to a radiation accident. J. Model. Simulat. 2 (1) (2014) 1-8.
  11. E. F. Salem. Risk Analysis for Overexposure Measurements Due to Radiological Accidents Using Computer Code and the Lessons Learned “Meet Halfa as a Case Study, Egypt’’. Am. J. Phys. Appl. 5 (2017) 13-19.
  12. H. Han, Y. S. Yeom, C. Choi, H. Lee, B. Shin, X. Zhang, R. Qiu, N. Petoussi-Henss, C. H. Kim Dose Coefficients for Use in Rapid Dose Estimation in Industrial Radiography Accidents. In: S. Makarov, M. Horner, G. Noetscher, (eds). Brain and Human Body Modeling: Computational Human Modeling at EMBC 2018. Chapter 15. Cham (CH): Springer, (2019) p. 295-304.
  13. C. H. Kim, Y. S. Yeom, N. Petoussi-Henss, M. Zankl, W. E. Bolch, C. Lee, C. Choi, T. T. Nguyen, K. Eckerman, H. S. Kim, M. C. Han, R. Qiu, B. S. Chung, H. Han, B. Shin. ICRP Publication 145: Adult Mesh-Type Reference Computational Phantoms. Ann ICRP. 49(3) (2020)13-201.
  14. D. B. Pelowitz. Monte Carlo N-particle extended. United states: Los Alamos National Laboratory Report.
  15. H. G. Menzel, C. Clement, P. DeLuca. ICRP Publication 110. Realistic reference phantoms: an ICRP/ICRU joint effort. A report of adult reference computational phantoms. Ann ICRP. 39 (2) (2009) 1-164. 
  16. The 2007 Recommendations of the International Commission on Radiological Protection, ICRP publication 103. Ann ICRP. 37(2-4) (2007) 1-332.
  17. N. Petoussi-Henss, W. E. Bolch, K. F. Eckerman, A. Endo, N. Hertel, J. Hunt, M. Pelliccioni, H. Schlattl, M. Zankl. International Commission on Radiological Protection; International Commission on Radiation Units and Measurements. ICRP Publication 116. Conversion coefficients for radiological protection quantities for external radiation exposures. Ann ICRP. 40 (2-5) (2010) 1-257. 
  18. A. Pandey, P. S. Rawat, A. U. Sonawane. Risk assessment in the industrial radiography practice in India using probabilistic approach. Int. J. Risk. Assess. Manag. 21 (2018) 232-247.
  19. National Nuclear Data Center (NNDC), Brookhaven National Laboratory.
  20. C. M. A. de Lima, T. A. de Almeida Silva, J. G. Hunt, F. C. A. Da Silva. Reconstructive dosimetry and radiation dose evaluation of workers and public due to a Brazilian radiological accident in industrial radiography. J. Radiol. Protect. 42 (1) (2022) 011505.
  21. C. M. A. de Lima, F. C. A. Da Silva. Overview of Brazilian industrial radiography accidents with cutaneous radiation syndrome. Braz. J. Radiat. Sci. 6 (2B) (2018) 1-12.
  22. M. Annamalai, P. S. Iyer, T. M. R. Panicker. Radiation injury from acute exposure to an iridium-192 source: case history. Health. Phys. 35 (1978) 387-389.
  23. A. Jalil, M. R. Molla. An overexposure in industrial radiography using an 192Ir radionuclide. Health. Phys. 57 (1989) 117-119.
  24. J. Rouzitalab, A. Zamani, A. Yazdandout, L. Eshraghi. An Investigation to dose calculation in Gilan_Iran industrial radiography accident by using MCNP. Proceeding of 18th World Conference on Nondestructive Testing, Durban, 16-20 April, 2012.