بررسی اثر نفتالن در ترکیب سوسوزن‌ پلاستیک با خاصیت جداسازی شکل پالس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی هسته‌ای-مهندسی پرتو پزشکی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

2 پژوهشگاه پلیمر و پتروشیمی ایران، تهران، ایران

3 گروه فیزیک، دانشکده علوم، دانشگاه بیرجند، بیرجند، ایران

10.22052/rsm.2024.254497.1053

چکیده

ضرورت ساخت آشکارسازهایی با ابعاد بزرگ، بازدهی مطلوب، قدرت تفکیک بالا و قیمت کم، در دو دهه اخیر منجر به تحقیقات گسترده‌ای در ساخت سوسوزن‌های پلاستیکی شده است. بهینه‌سازی این نوع سوسوزن‌ از موضوعات تحقیقاتی روز دنیا است. در این پژوهش از مونومر استایرن، دی‌فنیل اکسازول (PPO) به‌عنوان فلوروفور اولیه، فنیل اکسازول بنزن (POPOP) به‌عنوان فلوروفور ثانویه و نفتالن در ساخت سوسوزن پلاستیک استفاده شد. ساخت نمونه‌ها بر اساس فرایند پلیمریزاسیون با روش حرارتی بدون آغازگر صورت گرفته است. نتایج طیف سنجی گاما با استفاده از چشمه‌های ۱۳۷Cs و ۶۰Co نشان داد که با افزودن نفتالن در ساخت سوسوزن پلاستیک، بهره نوری به ترتیب ۵/۷ و ۲/۷ درصد افزایش می‌یابد. جداسازی پرتوهای گاما و نوترون با استفاده از روش گذر از صفر به‌وسیله چشمه ۲۵۲Cf نشان داد که برای نمونه شامل ۱۵ درصد وزنی PPO بدون حضور نفتالن، FOM و نسبت قله به دره در بایاس ۱۰۰۰keVee به ترتیب برابر ۰/۹۱ و ۴/۱۸ و برای نمونه شامل ۱۵ درصد وزنی PPO و ۴ درصد وزنی نفتالن، برابر ۱/۰۵ و ۸/۷۱ است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the effect of naphthalene in the composition of plastic scintillation with Pulse Shape Discrimination ability

نویسندگان [English]

  • Laleh Younesi 1
  • Mahdi Salehi Barough 1
  • Shervin Ahmadi 2
  • Vaheed Esmaili Sani 1
  • Esmaeil Bayat 3
1 Department of Medical Radiation Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 Iran Polymer and Petrochemical Institute, Tehran, Iran
3 Department of Physics, Faculty of Science, Birjand University, Birjand, Iran
چکیده [English]

The necessity for fabrication detectors with large dimensions, optimal efficiency, high resolution and low price has led to extensive research in the manufacturing of plastic scintillators in the last two decades. The optimization of this type of scintillator is one of the current research topics in the world. In this study, styrene monomer, diphenyloxazole (PPO) as the primary fluorophore and phenyl oxazole benzene (POPOP) as the secondary fluorophore and naphthalene were used to fabricate the plastic scintillators. The samples were fabricated through thermal polymerization without an initiator. The results of gamma spectroscopy using 137Cs and 60Co sources have been shown the increase of the light yield by 5.7% and 2.7% respectively by adding naphthalene in construction of the plastic scintillator. The neutron-gamma discrimination was determined with an analogous discrimination circuit based on the zero-crossing method with a 252Cf source. The results showed that for the sample containing 15 wt% PPO without naphthalene, the FOM and peak-to-valley ratio at a bias of 1000 keVee were 0.91 and 4.18, respectively, while for the sample with 15 wt% PPO and 4 wt% naphthalene, 1.05 and 8.71 were obtained, respectively.

کلیدواژه‌ها [English]

  • Plastic Scintillator
  • Primary Fluorophore
  • Secondary Fluorophore
  • naphthalene
  • discrimination
  1. P. Moskal, E. L. Stepien. Prospects and clinical perspectives of total-body PET imaging using plastic scintillators. PET Clin. 15 (2020) 439–452.
  2. R. Hoischen, S. Pietri, D. Rudolph, W. Prokopowicz, H. Schaffner, S. Emde, P. Golubev, A. Wendt, N. Kurz, H. J. Wollersheim, J. Gerl. Fast timing with plastic scintillators for in-beam heavy-ion spectroscopy. Nucl. Instrum. Methods Phys. Res. A 654 (2011) 354–360.
  3. M. Hamel. Plastic Scintillators. Springer, Switzerland, 2021.
  4. G. F. Knoll. Radiation Detection and Measurement. John Wiley & Sons, Michigan, 2010.
  5. M. Hamel, G. Lebouteiller. Attempting to prepare a plastic scintillator from a biobased polymer. Appl. Polymer Sci. 137 (121) (2020) 48724.
  6. M. Hamel, G. g. Turk, A. Rousseau, S. Darbon, C. Reverdin, S. Normand. Preparation and characterization of highly lead-loaded red plastic scintillators under low energy x-rays. Nucl. Instrum. Methods Phys. Res. A 660 (2011) 57–63.
  7. N. J. Cherepy, R. D. Sanner, P. R. Beck E. L. Swanberg, T. M. Tillotson, S. A. Payne, Bismuth- and lithium-loaded plastic scintillators for gamma and neutron detection. Nucl. Instrum. Methods Phys. Res. A 778 (2015) 126–132.
  8. I. A. Pawełczak, A. M. Glenn, H. P. Martinez, M. L. Carman, N. P. Zaitseva, S. A. Payne. Boron-loaded plastic scintillator with neutron-γ pulse shape discrimination capability. Nucl. Instrum. Methods Phys. Res. A (2014) 62–69.
  9. D. M. Poehlmann, D. Barker, H. Chagani, P. Cushman. G. Heuermann, A. Medved, H. E. Rogers and R. Schmitz. Characterization of gadolinium-loaded plastic scintillator for use as a neutron veto. physics.ins-det (2019).
  10. E. Montbarbona, Z. Zhangb, A. Grabowskia, R. Wooa, D. Tromsona, C. Dehe-Pittancea, R. B. Pansub, G. H. V. Bertranda, M. Hamel. The role of the secondary fluorophore in ternary plastic scintillators aiming at discriminating fast neutrons from gamma-rays. J. Luminescence 213 (2019) 67–74.
  11. N. Zaitseva, B. L. Rupert, I. Pawetczak, A. Glenn, H. P. Martinez, L. Carman, M. Faust, N. Cherepy, S. Payne. Plastic scintillators with efficient neutron/gamma pulse shape discrimination. Nucl. Instrum. Methods Phys. Res. A 668 (2012) 88–93.
  12. N. Zaitseva, A. Glenn, H. P. Martinez, L. Carman, I. Pawełczak, M. Faust, S. Payne. Pulse shape discrimination with lithium-containing organic scintillators. Instrum. Methods Phys. Res. A 729 (2013) 747–754.
  13. P. Blanc, M. Hamel, C. Dehé-Pittance, L. Rocha, R. B. Pansu. Neutron/gamma pulse shape discrimination in plastic scintillators: Preparation and characterization of various compositions. Nucl. Instrum. Methods Phys. Res. A 750 (2014) 1–11.
  14. G. H. V. Bertrand, M. Hamel, F. Sguerra. Current Status on Plastic Scintillators Modifications. Chem. A European J. 20 (2014) 15660–15685.
  15. L. Younesi, M. Salehi-Barough, Sh. Ahmadi, V. Esmaili-Sani. The effect of PPO concentration on the scintillation properties of a polystyrene based plastic scintillator. J. Instrumentation 19 (01) (2024) T01001.
  16. L. Younesi, M. Salehi-Barough, Sh. Ahmadi, E. Bayat. Fabricating plastic scintillator based on methyl styrene with the gamma and neutron ability to discrimination. Iran, Patent Number 110660, 2024.
  17. I. L. H. Knox, T. G. Miller. A technique for Determining bias settings for organic scintillators. Nucl. Instrum. Methods A 101 (1972) 519–525.
  18. E. Bayat, N. Divani-Vais, M. M. Firoozabadi, N. Ghal-Eh. A comparative study on neutron-gamma discrimination with NE213 and UGLLT scintillators using zero-crossing method. Radiat. Phys. Chem. 81 (2012) 217–220.
  19. S. Zare, N. Ghal-Eh, E. Bayat. On timing response improvement of an NE213 scintillator attached to two PMTs. Radiat. Phys. Chem. 90 (2013) 6–10.