مطالعه میکرودزیمتری الکترون‌ها با استفاده از سطح مقطع‌های تجربی در مقایسه با سطح مقطع‌های پیش‌فرض کد Geant4-DNA

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشکده علوم، دانشگاه صنعتی خاتم الانبیاء بهبهان، بهبهان، ایران

2 گروه فیزیک، دانشکده علوم، دانشگاه شیراز، شیراز، ایران

چکیده

میکرودوزیمتری، رهیافتی است که می‌تواند در ارتقاء کیفیت پرتودرمانی، بسیار موثر باشد. این دانش بر اساس مفهوم احتمالی انباشت انرژی در بافت‌ها و محیط‌های کوچک زیستی در ابعاد میکرومتر و کوچکتر، کمیت‌های مرتبط با اثر پرتوها را محاسبه و بررسی می‌کند. در این پژوهش، با استفاده از کد Geant4-DNA و سطح مقطع‌های تجربی و با به‌کارگیری روش تصادفی µ، کمیت‌های میکرودوزیمتری متوسط انرژی خطی و انرژی ویژه (فراوانی) الکترون‌های کم انرژی در استوانه‌هایی در ابعاد ساختارهای میکروسکوپی زنده مثل DNA، نوکلئوزوم و فیبر کروماتین در کره‌ای از آب با قطری در حدود میانگین اندازه هسته سلول‌های انسان محاسبه شده است. نتایج این پژوهش با کمیت‌های میکرودوزیمتری محاسبه شده با سطح مقطع‌های پیش فرض Geant4-DNA نیز مقایسه شده است. مشاهده ‌شد که مقادیر متوسط انرژی خطی و انرژی ویژه (فراوانی) با سطح مقطع‌های تجربی بزرگتر از این مقادیر با سطح مقطع‌های پیش فرض Geant4-DNA هستند. بیشینه اختلاف این کمیت‌ها، در استوانه‌های با اندازه‌ کوچک و متوسط در انرژی keV 1/0 و در استوانه بزرگ در انرژی keV 3/0 مشاهده شد. همچنین برای حجمی قابل قیاس با DNA، تناظر خوبی بین نتایج متوسط انرژی خطی فراوانی محاسبه شده با سطح مقطع‌های تجربی و نتایج آسیب الکترون‌ها در DNA سلول مشاهده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of electron microdosimetry using experimental cross-sections compared to the default cross-sections of the Geant4-DNA code

نویسندگان [English]

  • Mojtaba Mokari 1
  • Hossein Moeini 2
1 Department of Physics, College of Sciences, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
2 Department of Physics, School of Science, Shiraz University, Shiraz, Iran
چکیده [English]

Microdosimetry is an approach that can be very effective in improving the quality of radiation therapy. Based on the possible concept of deposited energy in microbiological tissues and environments, this knowledge can help to calculate and examine the quantities related to the effect of radiation. In this research, using the Geant4-DNA code in conjunction with experimental cross-sections and the µ-randomness method, the microdosimetry quantities known as the frequency-mean lineal energy and frequency-mean specific energy were calculated for low-energy electrons. The calculations concerned cylinders that are comparable in size with living organisms such as DNA, nucleosome, and chromatin fiber, distributed randomly in a sphere of water with a diameter of about the average size of the nucleus of human cells. The results were compared with the ones obtained based on the default cross-sections of Geant4-DNA. We found that the average values of (frequency-mean) lineal and specific energy calculated with experimental cross-sections were larger than those calculated with default cross sections. The maximum difference of these quantities was observed, in the so-called small and medium cylinders, at 0.1 keV and, in the large cylinder, at 0.3 keV. Also, for a volume comparable in size to DNA, a good correspondence between the results of frequency-mean lineal energy with experimental cross-sections and the electron DNA-damage in the cell was observed.

کلیدواژه‌ها [English]

  • Geant4-DNA code
  • electron
  • cross-sections
  • microdosimetry
  • lineal energy
  • specific energy
1. H. Yamazaki, Y. Demizu, T. Okimoto, M. Ogita, K. Himei, S. Nakamura, G. Suzuki, K. Yoshida, T. Kotsuma, Y. Yoshioka, R. Oh. Reirradiation for recurrent head and neck cancers using charged particle or photon radiotherapy. Strahlenther. Onkol. 193 (7) (2017) 525–533.
2. H. H. Rossi. Specification of radiation quality.
Radiat. Res. 10 (1959) 522.
3. H. H. Rossi, W. Rozenzweig. A device for the measurement of dose as a function of specific ionization.
Radiology 64 (1955) 404.
4. D. T. Goodhead, J. Thacker, Inactivation and mutation of cultured mammalian cells by aluminium characteristic ultrasoft X-rays I. Properties of aluminium X-rays and preliminary experiments with Chinese hamster cells.
Int. J. Radiat. Biol. 31 (1977) 541-559.
5. M. Mokari, H. Moeini, M. Eghbali. Modeling the distribution of deposited energy by alpha particles from Radon 223 decay and its effect on DNA.
Iranian J. Radiat. Safe. Measure. 9 (2020) 65-71.
6. J. T. Goorley, M. R. James, T. E. Booth, F. Brown, J. Bull, L. J. Cox, J. Durkee, J. Elson, M. Fensin, R. A. Forster, J. Hendricks, H. G. Hughes, R. Johns, B. Kiedrowski, R. Martz, S. Mashnik, G. McKinney, D. Pelowitz, R. Prael, J. Sweezy, L. Waters, T. Wilcox, T. Zukaitis.
Initial MCNP6 Release Overview - MCNP6. version 1.0, United States: N. p., 2013.
7. A. Ferrari, P. Sala, A. Fasso, J. Ranft,
FLUKA: a Multi-Particle Transport Code. Geneva: CERN, 2005.
8. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G.
Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M.
Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche. Geant4- a simulation toolkit.
Nucl. Instrum Methods Phys. Res. A. 506 (2003) 250–303.
9. H. Nikjoo, D. Emfietzoglou, T. Liamsuwan, R. Taleei, D. Liljequist, S. Uehara. Radiation track, DNA damage and response-a review.
Rep. Prog. Phys. 79 (2016) 116601.
10. M. Terrissol, A. Beaudre. Simulation of space and time evolution of radiolytic species induced by electrons in water.
Radiat. Prot. Dosimetry 31 (1990) 171-175.
11. S. Incerti, I. Kyriakou, M. Bernal, M. C. Bordage, Z. Francis, S. Guatelli, V. Ivanchenko, M. Karamitros, N. Lampe, S. B. Lee, S. Meylan, C. H. Min, W. G. Shin, P. Nieminen, D. Sakata, N. Tang, C. Villagrasa, H. N. Tran, J. M. C. Brown. Geant4-DNA example applications for track
structure simulations in liquid water: A report from the Geant4-DNA Project. Med. Phys. 45
(2018) 722-739.
12. T. Liamsuwan, M. Hultqvist, L. Lindborg, S. Uehara, H. Nikjoo. Microdosimetry of proton and carbon ions.
Med. Phys. 41 (2014) 081721.
13. T. Liamsuwan, D. Emfietzoglou, S. Uehara, H. Nikjoo. Microdosimetry of low-energy electrons.
Int. J. Radiat. Biol. 88 (2012) 899-907.
14. M. Mokari, H. Moeini, M. Soleimani. Calculation of microdosimetric spectra for protons using Geant4-DNA and a μ-randomness sampling algorithm for the nanometric structures.
Int. J. Radiat. Biol. 97 (2021) 208-218.
15. H. Moeini, M. Mokari. DNA damage and microdosimetry for carbon ions: Track structure simulations as the key to quantitative modeling of radiation-induced damage.
Med. Phys. 49 (2022) 4823-4836.
16. M. Mokari, M. H. Alamatsaz, H. Moeini, A. A. Babaei Brojeny, R. Taleei. Track structure simulation of low energy electron damage to DNA using Geant4-DNA.
Bio. Phys. Eng. Express 4 (2018) 065009.
17. M. Mokari, H. Moeini, M. Soleimani, E. Fereidouni. Calculation and comparison of the direct and indirect DNA damage induced by low energy electrons using default and CPA100 cross section models within Geant4-DNA.
Nucl. Inst. Methods Phys. Res. B 480 (2020) 56-66.
18. M. Mokari. Calculation of microdosimetric quantities of low energy electrons in subcellular structures using the Geant4-DNA code.
Iranian J. Radiation Safe. Measure. 11 (2022) 39-44.
19. S. Incerti, A. Ivanchenko, M. Karamitros, A. Mantero, P. Moretto, H. N. Tran, B Mascialino, C. Champion, V. N Ivanchenko, M. A. Bernal, Z. Francis, C Villagrasa, G. Baldacchin, P. Guèye, R. Capra, P. Nieminen, C. Zacharatou. Comparison of GEANT4 very low energy cross section models with experimental data in water.
Med. Phys. 37 (2010) 4692–4708.
20. E. Polig, D. B. Kimmel, W. S. S. Jee. Morphometry of bone cell nuclei and their location relative to bone surfaces.
Phys. Med. Biol. 29 (1984) 939–952.
21. ICRU,
Microdosimetry, vol. 36, International Commission on Radiation Units and Measurements, Washington, 1983.
22. A. Kellerer.
Fundamental of micro-dosimetry, In: The Dosimetry of Ionizing Radiation. vol. 1, K. R. Kase, B. E. Bjarngaard, F. H. Attix, Eds., Academic Press, USA, 1975.
23. H. Nikjoo, D. T. Goodhead, D. H. Charlton, H. E. Paretzke. Energy Deposition in Small Cylindrical Targets by Monoenergetic Electrons.
Int. J. Radiat. Biol. 60 (1991) 739–756.
24. J. Fulford, H. Nikjoo, D. T. Goodhead, P. O’Neill. Yields of SSB and DSB induced in DNA by AlK ultrasoft X-rays and a-particles: comparison of experimental and simulated yields.
Int. J. Radiat. Biol. 77 (2001) 1053-1066.
25. C. M. de Lara, M. A. Hill, D. Papworth, P. O’Neill. Dependence of the Yield of DNA Doublestrand Breaks in Chinese Hamster V79-4 Cells on the Photon Energy of Ultrasoft X Rays.
Radiat. Res. 155 (2001) 440-448.
26. Z. Francis, S. Incerti, M. Karamitros, H. N. Tran, C. Villagrasa. Stopping power and ranges of electrons, protons and alpha particles in liquid water using the Geant4-DNA package.
Nucl. Instruments Methods Phys. Res. B 269 (2011) 2307-2311.