بهبود واقع‌گرایانه رزولوشن تصاویر رادیوگرافی قفسه سینه با استفاده از شبکه مولد تخاصمی

نوع مقاله : مقاله کنفرانسی

نویسندگان

1 دانشکده مهندسی انرژی و فیزیک، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 بخش مهندسی پرتوپزشکی، دانشکده مهندسی انرژی و فیزیک، دانشگاه صنعتی امیرکبیر، تهران، ایران

3 بخش مهندسی هسته‌ای، دانشکده مهندسی مکانیک، دانشگاه شیراز، شیراز، فارس، ایران

4 مرکز تحقیقات تابش، دانشکده مهندسی مکانیک، دانشگاه شیراز، شیراز، فارس، ایران

چکیده

رادیوگرافی از جمله روش‌های تصویربرداری پزشکی است که با استفاده از اشعه ایکس به پزشکان در امر تشخیص صحیح بیماری‌ها کمک می‌کند. تنظیم نامناسب پارامترهای تیوب اشعه ایکس، انواع آرتیفکت‌ها و نویزها عواملی هستند که بر روی کیفیت تصاویر رادیوگرافی تأثیر می‌گذارند. در مواردی ممکن است آن‌چنان کیفیت تصاویر را خراب کنند که نیاز به تصویربرداری مجدد باشد و این امر باعث می‌شود دز دریافتی بیمار افزایش یابد. امروزه هوش مصنوعی پیشرفت‌های چشمگیری را در زمینه‌های مختلف داشته است. یادگیری عمیق یکی از شاخه‌های هوش مصنوعی است که به‌طور گسترده در تصویربرداری‌های پزشکی مورد استفاده قرار می‌گیرد. در این مقاله از شبکه مولد تخاصمی به عنوان یکی از قدرتمندترین مدل‌های شبکه عصبی موجود، برای بهبود رزولوشن، کاهش نویز و آرتیفکت تصاویر رادیوگرافی قفسه سینه استفاده شده است. مقدار کمیت‌های RMSE، PSNR و SSIM برای 150 تصویر محاسبه گردیده است که میانگین آن‌ها به ترتیب برابر 66/4، 92/34 و 923/0 است. این نتایج نشان می‌دهد که شبکه آموزش داده شده از توانایی بالایی برای بازسازی تصاویر برخوردار است و این قابلیت را دارا است که رزولوشن تصاویر رادیوگرافی قفسه سینه را بهبود دهد و آن‌ها را از لحاظ تشخیصی ارزشمندتر کند. همچنین در مواردی که کیفیت تصاویر به هر دلیلی پایین باشد، نیاز به تصویربرداری مجدد نخواهد بود و بیمار دز اضافی ناشی از تصویربرداری مجدد دریافت نمی‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Realistically improvement of chest X-ray resolution using generative adversarial network

نویسندگان [English]

  • Zahra Ghasemi 1
  • Payam Samadi Miandoab 2
  • Samira Sarshough 3
  • Sedigheh Sina 3 4
1 Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
2 Department of Medical Radiation Engineering, Faculty of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
3 Department of nuclear engineering, Shiraz University, Shiraz, Fars, Iran
4 Radiation Research Center, Shiraz University, Shiraz, Fars, Iran
چکیده [English]

X-ray is one of the medical imaging methods, which helps physicians correctly diagnose diseases. Improper adjustment of X-ray tube parameters, different types of artifacts, and noise are factors affecting the quality of radiographic images. In some cases, poor quality of the images may lead to re-imaging, which increases the patient's dose. Today, artificial intelligence has made significant progress in various fields. Deep learning is one of the branches of artificial intelligence, which is widely used in medical imaging. In this article, the generative adversarial network is used as one of the most powerful available neural network models for resolution improvement, noise, and artifact reduction of chest X-rays. The values of RMSE, PSNR, and SSIM are calculated for 150 images with an average of 4.66, 34.92, and 0.923, respectively. These results show that trained networks have a high ability to improve the resolution of chest X-rays and make them more diagnostically valuable. Also, in cases where the image quality is low for any reason, there will be no need for re-imaging, and the patient will not receive the extra dose resulting from the re-imaging.

کلیدواژه‌ها [English]

  • super-resolution
  • generative adversarial network
  • radiography
  • artifact
  • deep neural network
  1. Forum of International Respiratory Societies. The Global Impact of Respiratory Disease – 2nd ed. Sheffi eld, European Respiratory Society, 2017.
  2. W. Huda, R. B. Abrahams. Radiographic techniques, contrast, and noise in x-ray imaging. Amer. J. Roentgenology 204 (2) (2015) W126-W131.
  3. C. M. Shetty, A. Barthur, A. Kambadakone, N. Narayanan, R. Kv. Computed radiography image artifacts revisited. Amer. J. Roentgenology 196 (1) (2011) W37-W47.
  4. J. Ker, L. Wang, J. Rao, T. Lim. Deep learning applications in medical image analysis. IEEE Access 6 (2017) 9375-9389.
  5. Z. Ghasemi, P. Samadi Miandoab. Feasibility study of convolutional long short‑term memory network for pulmonary movement prediction in CT images. J. Biomed. Phys. Eng. (2021) I-XII.
  6. P. S. Miandoab, A. E. Torshabi, S. Nankali. Investigation of the optimum location of external markers for patient setup accuracy enhancement at external beam radiotherapy. J. Appl. Clin. Med. Phys. 17 (6) (2016) 32-43.
  7. E. E.-D. Hemdan, M. A. Shouman, M. E. Karar. Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images. arXiv: 2003. 11055 (2020).
  8. S. M. Lee, J. B. Seo, J. Yun, Y. -H. Cho, J. Vogel-Claussen, M. L. Schiebler, W. B. Gefter, E. J. Van Beek, J. M. Goo, K. S. Lee, Deep learning applications in chest radiography and computed tomography. J. Thorac. Imaging 34 (2) (2019) 75-85.
  9. T. Rahman, A. Khandakar, M. A. Kadir, K. R. Islam, K. F. Islam, R. Mazhar, T. Hamid, M. T. Islam, S. B. A. Kashem, Z. B. Mahbub, M. A. Ayari, M. E. H. Chowdhury. Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization. IEEE Access (8) (2020) 191586-191601.
  10. G. Zhang, Y. Xie, Y. Li, C. Shen, Y. Xia. Covid-19 screening on chest x-ray images using deep learning-based anomaly detection. arXiv: 2003. 12338 (2020).
  11. C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, Alejandro Acosta, A. Aitken, A.Tejani, J. Totz, Z. Wang, W. Shi. Photo-realistic single image super-resolution using a generative adversarial network. Proc. IEEE Conf. Comput. Vision Pattern Recognition (2017) 4681-4690.
  12. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio. Generative adversarial nets. Proceedings of the 27th International Conference on Neural Information Processing Systems 27 (2014) 2672-2680.
  13. K. Wang, C. Gou, Y. Duan, Y. Lin, X. Zheng, F.-Y. Wang. Generative adversarial networks: introduction and outlook. IEEE/CAA J. Automatica Sinica 4 (4) (2017) 588-598.
  14. K. He, X. Zhang, S. Ren, J. Sun. Deep residual learning for image recognition. Proc. IEEE Conf. Comput. Vision Pattern Recognition (2016) 770-778.
  15. K. Nasrollahi, T. B. Moeslund. Super-resolution: a comprehensive survey. Machine Vision Appl. 25 (6) (2014) 1423-1468.