محاسبه مونت‌کارلو فعال‌سازی نوترونی چشمه نوترونAm-Be دانشگاه شهید باهنرکرمان

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی هسته‌ای، دانشکده علوم و فناوری‌های نوین، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

چکیده

معمولاً تولید رادیوایزوتوپ‌ها توسط راکتورها و شتاب‌دهنده‌های سیکلوترون و خطی انجام می‌گرفت. در این تحقیق سعی می‌شود از روش مونت‌کارلو با استفاده از کد MCNP برای شبیه‌سازی فعال‌سازی نوترونی توسط چشمه نوترون کرمان و بررسی بهره رادیوایزوتوپ‌های تولیدی استفاده شود. بدین منظور از دستگاه پراش اشعه  X برای تشخیص عناصر تشکیل‌دهنده این مواد استفاده می‌شود. برای فعال‌سازی نوترونی به یک منبع برای بمباران کردن نمونه نیاز است که از این طریق رادیوایزوتوپ عناصر تولید می‌شود. هر رادیوایزوتوپ طیف مشخصی را منتشر می‌کند که با استفاده از آن می‌توان غلظت عناصر موجود در آن را تعیین کرد. نتیجه بررسی با استفاده از کد MCNP نشان می‌دهد که امکان تولید چشمه رادیواکتیو توسط چشمه نوترون کرمان وجود دارد. رادیوایزوتوپ Cl36 بیش‌ترین بهره تولید را بین مواد تحت تابش چشمه نوترون کرمان دارد. بنابراین از چشمه نوترون کرمان می‌توان برای تولید رادیوایزوتوپ‌های مناسب آزمایشگاه‌های هسته‌ای استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Monte Carlo calculation of neutron activation by Am-Be neutron source in Shahid Bahonar University of Kerman

نویسندگان [English]

  • Arezoo Riahi
  • Mohammad Reza Rezaie Rayeni Nejad
Department of Nuclear Engineering, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, Iran
چکیده [English]

Radioisotopes were usually produced by reactors and cyclotron and linear accelerators. In this research, we try to use the Monte Carlo method using MCNP code to simulate neutron activation by the neutron source of Kerman and to investigate the interest of the produced radioisotopes. For this purpose, X-ray powder diffraction is used to detect the constituent elements of these materials. Neutron activation requires a source to bombard the sample, which produces the radioisotope of the elements. Each radioisotope emits a specific spectrum that can be used to determine the concentration of elements in it. The result of the study using the MCNP code shows that it is possible to produce a radioactive source by Kerman neutron source. Radioisotope 36Cl has the highest production interest among the materials irradiated by Kerman neutron source. Therefore, Kerman neutron source can be used to produce suitable radioisotopes for nuclear laboratories.

کلیدواژه‌ها [English]

  • Neutron
  • Neutron Activation
  • MCNP code
  • neutron source in Kerman
  • Radioisotope
  1. J. Adelstein, F. J. Manning (eds.). Isotopes for Medicine and the Life Sciences. National Academy of Sciences, Washington, DC (United States). Board on Engineering Education. Funding organisation: USDOE, Washington, DC (United States), 1995.
  2. J. G. Hamilton, R. S. Stone. Excretion of radio-sodium following intravenous administration to man. Proc. Soc. Exp. Biol. Med. 35 (1937) 595-598.
  3. S. Hertz, A. Roberts, R. D. Evans. Radioactive iodine as an indicator in the study of thyroid physiology. Proc. Soc. Exp. Biol. Med. 38 (1938) 617-619.
  4. J. H. Lawrence, L. W. Tuttle, K. C. Scott, C. L. Conner. Studies on neoplasms with aid of radioactive phosphorus. I. total phosphoros metabolism of normal and leukemic mice. J. Clin. Invest. 19 (2) (1940) 267-271.
  5. Neutrons - an overview. ScienceDirect Topics.
  6. M. D. Glascock. An overview of neutron activation analysis. Research Reactor, University of Missouri, Columbia, MO, U.S.A. (2006) p. 9.
  7. F. Marticke, G. Montémont, C. Paulus, O. Michel, J. I. Mars, L. Verger. Simulation study of an X-ray diffraction system for breast tumordetection. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip .867 )2017( 20-31.
  8. Los Alamos National Laboratory: MCNP Home Page. https://mcnp.lanl.gov/.
  9. J. Zhang, Y. Cai, N. Chen. Development of research on code MCNP. Nucl. Phys. Rev. 25 (1) (2008) 48-51.
  10. J. S. Hendricks, G. W. McKinney, L. S. Waters, T. L. Roberts, H. W. Egdorf, J. P. Finch, H. R. Trellue, E. J. Pitche, D. R. Mayo, M. T. Swinhoe, S. J. Tobin, J. W. Durkee. MCNPX EXTENSIONS, VERSION 2.5.0. Technical Report LA-UR-05-2675, Los Alamos National Lab. (2005) p. 65.
  11. Y. Tosaki, N. Tase, G. Massmann, Y. Nagashima, R. Seki, T. Takahashi, K. Sasa, K. Sueki, T. Matsuhiro, T. Miura, K. Bessho, H. Matsumura, M. He. Application of 36Cl as a dating tool for modern groundwater. Nucl. Instrum. Methods. Phys. Res. Sect. B Beam Interact. Mater. At. 259 (1) (2007) 479-485.
  12. P. Persson. Development of the Lund AMS Facility for the Detection of 59Ni – with Applications in the Nuclear Industry. Thesis/doccomp, Lund University Pub., Sweden, 2002.
  13. M. Kumar, S. S. Gandhi, J. Udhayakumar, A. K. Satpati, R. Shukla, A. K. Tyagi, A. Dash. An electrochemical technique to prepare 55Fe source for the calibration of the X-ray detectors. Radiochim. Acta 101 (3) (2013) 185-194.
  14. Internationale Atomenergie Organisation. Organization of a radioisotope Based Molecular Biology Laborator Vienna, Austria, 2006.
  15. F. DiFilippo. Estimating 56Co and 58Co contaminants in a 57Co flood source by PET/CT. J. Nucl. Med. 55 (2014) 2150.
  16. C. E. Aalseth, A. R. Day, D. A. Haas, E. W. Hoppe, B. J. Hyronimus, M. E. Keillor, E. K. Mace, J. L. Orrell, A. Seifert, V. T. Woods. Measurement of 37Ar to support technology for On-Site Inspection under the Comprehensive Nuclear-Test-BanTreaty. Nucl. Instr. Methods Phys. Res. Sec. A: Accelerators, Spectrometers, Detectors and Associated Equipment. 652 (1) (2011) 58-61.
  17. R. Van Ammel, S. Pommé, G. Sibbens. Experimental verification of the half-life of 65Zn, Appl. Radiat. Isot. 60 (2) (2004) 337-339.
  18. B. O. Homidov, M. Rajabova, J. A. Salomov. Investigation of vertical migration of 54Mn, 58Co, 63Ni, and 55Fe in the soil-water-plants system. International Conference on the Protection of the Environment from the Effects of Ionizing Radiation 303 (2003)193-195.
  19. P. Rowshanfarzad, A. Jalilian, M. Sabet, Production and quality control of 65ZN radioisotope. Nukleonika 50 (2005) 97-103.
  20. A. G. Fay, S. R. Biegalski, Contributions to the 37Ar background by research reactor operations. J. Radioanal. Nucl. Chem. 296 (1) (2013) 273-277.