[1] گوپال، بی. "مبانی داروسازی هستهای"، ترجمه: قنادی مراغه م.، گلی پور ر. و بهرامی سامانی ع.، چاپ و نشر نقش ونگار ایرانیان، )1387(، ۶۲۴. [2] Hevesy, G., “The Absorption and Translocation of Lead by Plants”, Journal of Biochemistry, (1923), 17: 439-445. [3] Prof. Dr. Fabian Mohr., Gold Chemistry: Applications and Future Directions in the Life Sciences, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, ISBN: 978-3-527-32086 8(2009). [4] S. M. HASANY*, IMTIAZ HANIF and I. H. QURESHI., 1978. Production of Carrier-free 199Au From Irradiated Platinum using I-Phenyl-3-methyl-4 trifluoroacetyl-pyrazolone-5 as an Extractant. International Journal of Applied Radiation and isotopes 1978. Vol. 29. pp. 145-149. [5] Khandaker M. U., Hiromitsu H. and Hasan A. K., "Production of radio-gold 199Au for diagnostic and therapeutic applications." AIP Conference Proceedings. (2016), Vol. 1704, No. 1, AIP Publishing. [6] HEATH R. L., Gamma-ray Spectrum Catalogue, 3rd edition, Vol. 2. U.S. Atomic Energy Commission, ANCR-1000-2 (1974). [7] KNISELEYR. M., ANDREW~G. A., EDWARDSC. L. and TANIDA R., Medical Radioisotope Scanning Vol. II, p. 207. STI/PUB/IZ IAEA, Vienna (1964). [8] McMillan E.n, Kamen M. and Ruben S.,” Neutron-Induced Radioactivity of the Noble Metals”, Phys. Rev., (1937), 52, 375. [9] Cutler C., Kan P., Chanda N., Jurisson S., Watkinson L. D., Lever J. R., Smith J. C., Katti K. V., Kannan R. and Katti K., “Preparation and use of 198Au/199Au for potential applications in cancer therapy and imaging”; Trans. Am. Nucl. Soc.,) 2010(, 103, 1123–1124 [10] Anderson P., Vaughan A. T. and Varley N. R., “Antibodies labeled with 199Au: Potential of 199Au for radio immunotherapy”; Nucl. Med. Biol.,) 1988(, 15(3), 293–297. [11] Humm J. L.,” Dosimetric aspects of radiolabeled antibodies for tumor therapy”; J. Nucl. Med.,) 1986(, 27(9), 1490–1497. [12] Zhao Y., Pang. B, Luehmann H., Detering L., Yang X., Sultan D., Harpstrite S., Sharma V., Cutler C. S., Xia Y. and Liu Y.,” Gold Nanoparticles Doped with 199Au Atoms and Their Use for Targeted Cancer Imaging by SPECT”; Adv. Healthcare Mater., )2016(, 5(8), 928–935. [13] J. L. Humm, J. Nucl. Med., 1986, 27(9), 1490–1497. [14] Fazaeli Y., Akhavan O., Rahighi R., Aboudzadeh M. R., Karimi E. and Afarideh H.,” In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures”; Mater. Sci. Eng., C,) 2014(, 45, 196–204. [15] Vimalnath K. V., Chakraborty S., Dash A., “Reactor production of no-carrier-added 199Au for biomedical applications”, The Royal Society of Chemistry,) 2016(, 6, 82832–82841. [16] Zandi, N., Afarideh, H., Aboudzadeh, M.R., Rajabifar, S., 2018. Study on a new design of Tehran Research Reactor for radionuclide production based on fast neutrons using MCNPX code. Appl. Radiat. Isot. 132, 67–71. M. Sadeghi, et al. Applied Radiation and Isotopes 154 (2019) 1088775 [17] Vagheian, M., Vosoughi, N., Gharib, M., 2016. Enhanced finite difference scheme for the neutron diffusion equation using the importance function. Ann. Nucl. Energy 96,412–421. [18] AEOI, 1989. Tehran Research Reactor Amendment to the Safety Report. Tehran-Iran. 17) AEOI, 2001. Safety Analysis Report for the Tehran Research Reactor (LEU). Tehran-Iran. [19] Mahdi Sadeghi., Aboudzadeh, M.R., Zandi, N., Maedeh Moradi., Kamran Yousefi,. 2019. Production assessment of non-carrier added 199Au by (n,gamma) reaction. Appl. Radiat. Isot. 132, 67–71. M. Sadeghi, et al. Applied Radiation and Isotopes 154 (2019) 1088775 [20] Hosseini, S.F., Sadeghi, M., Aboudzadeh, M.R., Mohseni, M., 2016. Production and modeling of radioactive gold nanoparticles in Tehran research reactor. Appl. Radiat. Isot. 118, 361–365. [21] A. Yu. Konobeyev, Yu. A. Korovin and P. E. Pereslavtsev, Code ALICE/ASH for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions, Report (Obninsk Institute of Nuclear Power Engineering, 1997). [22] Yu. A. Korovin, A. Yu. Konobeyev, P. E. Pereslavtsev, A. Yu. Stankovsky, C. Broeders, I. Broeders, U. Fischer and U. von M¨ollendorff, Nucl. Instrum. Methods Phys. Res. A 463 (2001) 544. [23] C. H. M. Broeders, A. Yu. Konobeyev and Yu. A. Korovin, ALICE/ASH–precompound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies, Report FZKA (Forschungszentrum Karlsruhe GmbH, Karlsruhe, 2005). [24] J. Ziegler, J. Biersack and U. Littmark, The code of SRIM — the stopping and range of ions in matter, SRIM Code (IBM Research, New York, USA, 2006). [25] M. Blann, ALICE-91, statistical model code system with fission competition, RSIC Code, Package PSR-146 (Lawrence Livermore National Laboratory, CA, USA, 1991). [26] Sadeghi, M., T. KAKAVAND., M. TAGHILO., 2011. Calculation of excitation function to produce 89zr via various nuclear reactions by ALICE/ASH code. International Journal of Modern Physics E Vol. 20, No. 8 (2011) 1775–1786. DOI: 10.1142/S0218301311019520. [27] Li C, Li D, Wan G, Xu J, Hou W, Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: Temperature and pH controls, Nanoscale Research Letters, 6 (2011) 440–440. DOI: 10.1186/1556-276X-6-440 [PubMed: 21733153]. [28] Schulz F, Homolka T, Bastús NG, Puntes V, Weller H, Vossmeyer T, Little adjustments significantly improve the Turkevich synthesis of gold nanoparticles, Langmuir, 30 (2014) 10779–10784. DOI: 10.1021/la503209b [PubMed: 25127436]. [29] Ojea-Jiménez I, Bastús NG, Puntes V, Influence of the sequence of the reagents addition in the citrate-mediated synthesis of gold nanoparticles, The Journal of Physical Chemistry C, 115 (2011) 15752–15757. DOI: 10.1021/jp2017242. [30] Sivaraman SK, Kumar S, Santhanam V, Monodisperse sub- 10 nm gold nanoparticles by reversing the order of addition in Turkevich method—The role of chloroauric acid, Journal of Colloid and Interface Science, 361 (2011) 543–547. DOI: 10.1016/j.jcis.2011.06.015 [PubMed: 21719021]. [31] Ding W, Zhang P, Li Y, Xia H, Wang D, Tao X, Effect of latent heat in boiling water on the synthesis of gold nanoparticles of different sizes by using the Turkevich