مطالعه پارامتر های تولید نانوذرات طلا-199 از طریق تابش هدف پلاتین با استفاده از نوترونهای حرارتی

نوع مقاله : مقاله کنفرانسی

نویسندگان

1 دانشگاه بین المللی امام خمینی قزوین

2 سازمان انرژی اتمی

چکیده

رادیونوکلئید طلا-199 با نیمه عمر14/3 روز، دارای یک تابش بتامنفی با انرژی  MeV45/0 (مناسب برای کاربردهای درمانی) و به همراه آن، دارای دو تابش گاما با انرژی­های KeV 73/158 (مناسب برای کاربردهای تصویربرداری) و KeV196/208 می­باشد. در این پژوهش، ما به شبیه سازی محیطی مشابه قلب راکتور تهران پرداختیم و پارامترهای مسئله را مشابه حالت تجربی تعریف کردیم تا بتوانیم بهره تولید طلا-199 به روش مونت­کارلو با استفاده از کد MCNP < /span> تعیین کنیم. از جمله پارامترهای محاسباتی در این تحقیق، سطح مقطع واکنش (n,γ) و تابع تحریک این واکنش است که با استفاده از کدهای هسته­ای ALICE/ASH و TALYS این پارامترها را محاسبه کردیم و با داده­های تجربی مقایسه کردیم. با پرتودهی دو نمونه 11 و 5/15 میلی­گرمی پودر پلاتین در شار نوترونی در راکتور تهران به مدت حدود 21 ساعت به ترتیب مقدار 55/1 و 98/1 میلی­کوری طلای-199 در انتهای بمباران تولید گردید. خلوص رادیونوکلئیدی و رادیوشیمیایی محصول نهایی به روش استخراج حلال-حلال با استفاده از دو ماده اتیل­استات با راندمان 99 %  وHDEHP < /span> با راندمان 80 % گزارش گردید. بعد از تولید رادیونوکلئید طلا-199 به صورت خالص و بدون حامل، نانوذرات رادیواکتیو طلا-199 را به روش ترکویچ[1] با استفاده از ماده احیاکننده تری­سدیم سیترات سنتز کردیم و در نهایت با استفاده از میکروسکوپ الکترونی روبشی[2]، به ارزیابی ریخت شناسی[3] نانوذرات پرداختیم. میانگین ابعاد نانوذرات 50 نانومتر محاسبه شد. 



 1Turkevich

 2Scanning Electron Microscopy(SEM)

 3Morphology

کلیدواژه‌ها


عنوان مقاله [English]

Study of the 199Au nanoparticles production parameters via irradiation of platinum target by using thermal neutrons

نویسندگان [English]

  • Amir Hosein Alinejad 1
  • Tayeb Kakavand 1
  • Mohammadreza Aboudzadeh 2
  • Saeed Kakaei 2
چکیده [English]

In this study, the 199Au nanoparticles production parameters have been investigated by a two-part study.
The first part is about the indirect method for production of non-carrier-added (NCA) 199Au radionuclide which was investigated both theoretically and experimentally. We applied MCNPX-2.6 code, TALYS-1.9, and ALICE code, aiming to simulate the reactor core of Tehran Research Reactor (TRR) and determining the activity of 199Au by MCNPX code using cross-sections calculated by TALYS-1.9 and specifying the production yield of 199Au. Also, the excitation function of 199Au was calculated via  reaction by TALYS-1.9 and ALICE/ASH-0.1 codes. As the corresponding experimental approach, we worked on the reactor production of 199Au by utilizing  thermal neutron flux through irradiation of natural Pt target for a specified irradiation time of 21 hours and 10 minutes in TRR. Regarding our facilities for evaluating the production yield, two samples of 11 mg and 15.5 mg natural Pt targets were bombarded in TRR. Because the natural Pt target, consists of five different stable isotopes (192Pt, 194Pt, 195mPt, 196Pt, 198Pt), some radionuclides as impurities will be produced during the reactor bombardment. So, using an enriched Pt target will increase the production yield together with a reduction of the impurity production. To separate 199Au radionuclide from the impurities mentioned above, and also to calculate both the chemical yield and the radionuclide purity of 199Au, two chemical separation techniques were applied. In the first technique, 199Au radionuclide was separated from impurities by employing liquid-liquid extraction (LLX) using ethyl acetate. As a result of this separation, the chemical yield of 199Au radionuclide was more than 99%. In the second technique, 199Au was separated by employing LLX using liquid cation exchanger, Di-(2-Ethylhexyl) phosphoric acid (HDEHP). By applying this technique, the chemical yield of 199Au radionuclide was more than 80% consequently. We calculated the theoretical findings and compared the results with the related experimental values.
In the second part of the present study, the synthesis of radioactive 199Au nanoparticles (199AuNPs) have been investigated by the Turkevich method with the aim of produce citrate-gold nanoparticles with different sizes of approximately 50 nm. Possible uses and applications of 199Au nanoparticles in medicine are also discussed.

کلیدواژه‌ها [English]

  • Monte Carlo
  • Yield
  • Thermal Neutrons Radioisotope
  • 199Au
  • Nanoparticle
  • Simulation
[1] گوپال، بی. "مبانی داروسازی هسته‌ای"، ترجمه: قنادی مراغه م.، گلی پور ر. و بهرامی سامانی ع.، چاپ و نشر نقش ونگار ایرانیان، )1387(، ۶۲۴. [2] Hevesy, G., “The Absorption and Translocation of Lead by Plants”, Journal of Biochemistry, (1923), 17: 439-445. [3] Prof. Dr. Fabian Mohr., Gold Chemistry: Applications and Future Directions in the Life Sciences, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, ISBN: 978-3-527-32086 8(2009). [4] S. M. HASANY*, IMTIAZ HANIF and I. H. QURESHI., 1978. Production of Carrier-free 199Au From Irradiated Platinum using I-Phenyl-3-methyl-4 trifluoroacetyl-pyrazolone-5 as an Extractant. International Journal of Applied Radiation and isotopes 1978. Vol. 29. pp. 145-149. [5] Khandaker M. U., Hiromitsu H. and Hasan A. K., "Production of radio-gold 199Au for diagnostic and therapeutic applications." AIP Conference Proceedings. (2016), Vol. 1704, No. 1, AIP Publishing. [6] HEATH R. L., Gamma-ray Spectrum Catalogue, 3rd edition, Vol. 2. U.S. Atomic Energy Commission, ANCR-1000-2 (1974). [7] KNISELEYR. M., ANDREW~G. A., EDWARDSC. L. and TANIDA R., Medical Radioisotope Scanning Vol. II, p. 207. STI/PUB/IZ IAEA, Vienna (1964). [8] McMillan E.n, Kamen M. and Ruben S.,” Neutron-Induced Radioactivity of the Noble Metals”, Phys. Rev., (1937), 52, 375. [9] Cutler C., Kan P., Chanda N., Jurisson S., Watkinson L. D., Lever J. R., Smith J. C., Katti K. V., Kannan R. and Katti K., “Preparation and use of 198Au/199Au for potential applications in cancer therapy and imaging”; Trans. Am. Nucl. Soc.,) 2010(, 103, 1123–1124 [10] Anderson P., Vaughan A. T. and Varley N. R., “Antibodies labeled with 199Au: Potential of 199Au for radio immunotherapy”; Nucl. Med. Biol.,) 1988(, 15(3), 293–297. [11] Humm J. L.,” Dosimetric aspects of radiolabeled antibodies for tumor therapy”; J. Nucl. Med.,) 1986(, 27(9), 1490–1497. [12] Zhao Y., Pang. B, Luehmann H., Detering L., Yang X., Sultan D., Harpstrite S., Sharma V., Cutler C. S., Xia Y. and Liu Y.,” Gold Nanoparticles Doped with 199Au Atoms and Their Use for Targeted Cancer Imaging by SPECT”; Adv. Healthcare Mater., )2016(, 5(8), 928–935. [13] J. L. Humm, J. Nucl. Med., 1986, 27(9), 1490–1497. [14] Fazaeli Y., Akhavan O., Rahighi R., Aboudzadeh M. R., Karimi E. and Afarideh H.,” In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures”; Mater. Sci. Eng., C,) 2014(, 45, 196–204. [15] Vimalnath K. V., Chakraborty S., Dash A., “Reactor production of no-carrier-added 199Au for biomedical applications”, The Royal Society of Chemistry,) 2016(, 6, 82832–82841. [16] Zandi, N., Afarideh, H., Aboudzadeh, M.R., Rajabifar, S., 2018. Study on a new design of Tehran Research Reactor for radionuclide production based on fast neutrons using MCNPX code. Appl. Radiat. Isot. 132, 67–71. M. Sadeghi, et al. Applied Radiation and Isotopes 154 (2019) 1088775 [17] Vagheian, M., Vosoughi, N., Gharib, M., 2016. Enhanced finite difference scheme for the neutron diffusion equation using the importance function. Ann. Nucl. Energy 96,412–421. [18] AEOI, 1989. Tehran Research Reactor Amendment to the Safety Report. Tehran-Iran. 17) AEOI, 2001. Safety Analysis Report for the Tehran Research Reactor (LEU). Tehran-Iran. [19] Mahdi Sadeghi., Aboudzadeh, M.R., Zandi, N., Maedeh Moradi., Kamran Yousefi,. 2019. Production assessment of non-carrier added 199Au by (n,gamma) reaction. Appl. Radiat. Isot. 132, 67–71. M. Sadeghi, et al. Applied Radiation and Isotopes 154 (2019) 1088775 [20] Hosseini, S.F., Sadeghi, M., Aboudzadeh, M.R., Mohseni, M., 2016. Production and modeling of radioactive gold nanoparticles in Tehran research reactor. Appl. Radiat. Isot. 118, 361–365. [21] A. Yu. Konobeyev, Yu. A. Korovin and P. E. Pereslavtsev, Code ALICE/ASH for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions, Report (Obninsk Institute of Nuclear Power Engineering, 1997). [22] Yu. A. Korovin, A. Yu. Konobeyev, P. E. Pereslavtsev, A. Yu. Stankovsky, C. Broeders, I. Broeders, U. Fischer and U. von M¨ollendorff, Nucl. Instrum. Methods Phys. Res. A 463 (2001) 544. [23] C. H. M. Broeders, A. Yu. Konobeyev and Yu. A. Korovin, ALICE/ASH–precompound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies, Report FZKA (Forschungszentrum Karlsruhe GmbH, Karlsruhe, 2005). [24] J. Ziegler, J. Biersack and U. Littmark, The code of SRIM — the stopping and range of ions in matter, SRIM Code (IBM Research, New York, USA, 2006). [25] M. Blann, ALICE-91, statistical model code system with fission competition, RSIC Code, Package PSR-146 (Lawrence Livermore National Laboratory, CA, USA, 1991). [26] Sadeghi, M., T. KAKAVAND., M. TAGHILO., 2011. Calculation of excitation function to produce 89zr via various nuclear reactions by ALICE/ASH code. International Journal of Modern Physics E Vol. 20, No. 8 (2011) 1775–1786. DOI: 10.1142/S0218301311019520. [27] Li C, Li D, Wan G, Xu J, Hou W, Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: Temperature and pH controls, Nanoscale Research Letters, 6 (2011) 440–440. DOI: 10.1186/1556-276X-6-440 [PubMed: 21733153]. [28] Schulz F, Homolka T, Bastús NG, Puntes V, Weller H, Vossmeyer T, Little adjustments significantly improve the Turkevich synthesis of gold nanoparticles, Langmuir, 30 (2014) 10779–10784. DOI: 10.1021/la503209b [PubMed: 25127436]. [29] Ojea-Jiménez I, Bastús NG, Puntes V, Influence of the sequence of the reagents addition in the citrate-mediated synthesis of gold nanoparticles, The Journal of Physical Chemistry C, 115 (2011) 15752–15757. DOI: 10.1021/jp2017242. [30] Sivaraman SK, Kumar S, Santhanam V, Monodisperse sub- 10 nm gold nanoparticles by reversing the order of addition in Turkevich method—The role of chloroauric acid, Journal of Colloid and Interface Science, 361 (2011) 543–547. DOI: 10.1016/j.jcis.2011.06.015 [PubMed: 21719021]. [31] Ding W, Zhang P, Li Y, Xia H, Wang D, Tao X, Effect of latent heat in boiling water on the synthesis of gold nanoparticles of different sizes by using the Turkevich