ارزیابی اثرات تغییر ضخامت آشکارسازها بر کیفیت تصویر در تصویربرداری توسط دوربین کامپتون

نویسندگان

گروه فیزیک، دانشکده علوم پایه، دانشگاه گیلان، رشت، گیلان

چکیده

دوربین کامپتون دستگاهی است که به‌منظور تصویربرداری از چشمه‌های گسیلنده گاما با انرژی بالا توسعه یافته است. مزیت این دوربین نسبت به دوربین‌های تصویربرداری SPECT، در حساسیت، نحوه ‌آشکارسازی پرتو‌های گاما و استفاده از طیف وسیعی از انرژی پرتوهای گامای فرودی می‌باشد. تمامی موارد ذکرشده سبب گردیده که این دستگاه، کاربردهای ویژه‌ای جهت استفاده در موارد تصویربرداری پزشکی هسته‌ای و به‌خصوص هادرون‌تراپی داشته باشد. از طرفی بازسازی تصویر در دوربین کامپتون، نسبت به مدل‌های معمول بسیار پیچیده‌تر است و در واقع با نگاره‌های سطح-مخروطی مواجه هستیم؛ که در این رابطه روش‌های متفاوتی برمبنای روش تکرار به‌منظور بازسازی تصاویر توسعه یافته است. دوربین پراکندگی کامپتون شامل دو آشکارساز است که آشکارساز نزدیک‌تر به چشمه به‌منظور رخداد و ثبت پراکندگی کامپتون در این آشکارساز و دومین آشکارساز که در پشت آشکارساز ابتدایی قرار می‌گیرد (دورتر از چشمه)، برای جذب فوتون‌های پراکنده شده (توسط آشکارساز اول) طراحی شده است. موقعیت، انرژی و زمان برهم‌کنش توسط هر دو آشکارساز محاسبه می‌شود. به‌کمک انرژی نهشت‌یافته در دو آشکارساز و هم‌چنین ثبت موقعیت برهم‌کنش، زاویه گشودگی و رأس مخروط کامپتون قابل محاسبه خواهد بود. در ادامه نیز با تصویرِ این مخروط‌ها در فضای تصویر و یافتن نقاطی که پیکسل‌های اختصاص‌یافته به مخروط‌ها تراکم بیش‌تری دارند می‌توان بازسازی تصویر را برای دوربین کامپتون و در یک رصد انجام داد. در این مقاله، شبیه‌سازی دوربین کامپتون در نرم‌افزار GATE صورت پذیرفته و اثرات تغییر ضخامت بر نحوه آشکارسازی دوربین کامپتون، برای یک فانتوم شامل چهار کره پرتوزا بررسی شده است. بازسازی تصویر به‌کمک الگوریتم LM-MLEM در نرم‌افزار MATLAB انجام شده است. نتایج نشان می‌دهد که تخمین ضخامت‌های بهینه برای آشکارساز پراکننده دوربین کامپتون، با توجه به الگوریتم متفاوت بازسازی و نیز توازن میان ثبت رویدادها در آشکارساز جاذب و پراکننده به شرایط تصویربرداری و نوع چشمه پرتوزا وابسته است، اگرچه برای آشکارساز جاذب، ضخامت مؤثر برای افزایش جذب هرچه بیشتر رویدادها مورد نیاز است. میزان تکرار بر کارایی الگوریتم تأثیر مستقیمی داشته و نیز مشخصات دوربین می‌تواند بر کیفیت تصویر، به‌شدت تأثیرگذار باشد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating the effects of the detectors thickness variations on image quality in Compton imaging

نویسندگان [English]

  • Seyed Mohammadreza Hashemi
  • Peyvand Taherparvar
  • Mohammad Razzaghi
چکیده [English]

The Compton camera has been developed to estimate high-energy gamma-ray sources distribution. The advantages of this modality over SPECT system are larger field of view, higher sensitivity, and wider energy range. All of the mentioned properties of this device caused to have special applications for use in nuclear medicine and especially hadron therapy. Image reconstruction in the Compton camera are more complex in comparison with conventional imaging systems. In this way, different methods based on the iteration method have been developed to reconstruct the images. In fact, image reconstruction in Compton camera is performed by using conical projections and cone surfaces which gamma rays are probably emitted from them. Finally, cone surfaces projected into the image matrix. The Compton scattering camera consists of two detectors, the detector closest to the source for the occurrence and recording of the Compton scattering in this detector, and the second detector located behind the primary detector (farther from the source) designed to absorbing  the scattered photons (by the first detector). Position, energy and interaction time are stored by both detectors. Opening angle and the apex of the Compton cone can be calculated by using the amount of energy deposition in the two detectors and the location of the interactions. By having cone characteristics, cone surface is projected into the image space which allows to estimate the values of the traversed voxels. In this way, 3-D distribution of the source could be acquired by single-shot and without collimator. In this paper, the results of the Compton camera simulation in the GATE code are presented along with the written reconstruction algorithm. Then the effects of the detector thickness variations are evaluated by using a simulated phantom consisting of four radioactive spheres with different diameters. Image reconstruction was performed using LM-MLEM algorithm, which is based on the iterative method, in MATLAB software. The results of the image analysis show that the characteristic of the detector in the Compton camera along with iteration number have a strong impact on image quality.

 

کلیدواژه‌ها [English]

  • Compton camera
  • Hadron therapy
  • Image Reconstruction
  • GATE
[1] S. Chonfelder, A. Hirner and K. Schneider. A Telescope for Soft Gamma Ray Astronomy, Nuclear Instruments and Methods, 107(2) (1973) 385-394. [2] W. Todd, M. Nightingale and D. Everett. A proposed gamma camera, Nature, 251(1974) 132-134. [3] M. Singh. An electronically collimated gamma camera for single photon Emission computed tomography: Part I. theoretical considerations and design criteria, Medical Physics, 10(1983) 421-427. [4] M. Singh and D. Doria. An electronically collimated gamma camera for single photon emission computed tomography: Part II. Image reconstruction and preliminary experimental measurements, Medical Physics, 10(1983) 428-435. [5] N. Tsoulfanidis. Measurement and detection of radiation, Taylor & Francis, 2nd ed, (1995). [6] M. Singh, F. Doty, S. Friesenhahn and J. Butler. Feasibility of using Cadmiumzinc- Telluride detectors in electronically collimated SPECT, IEEE Transactions on Nuclear Science, 42(1995) 1139-1146. [7] F. Zhang, Z. He, D. Xu, G. Knoll, D. Wehe and J. Berry. Improved Resolution for 3-D Position Sensitive CdZnTe Spectrometers, IEEE Transactions on Nuclear Science, 51(2004) 2427-2431. [8] S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A.F. Chatziioannou, Y. Choi, Y.H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S.J. Glick, C.J. Groiselle, D. Guez, P.F. Honore, S. Kerhoas-Cavata, A.S. Kirov, V. Kohli, M. Koole, M. Krieguer, D.J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M.C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F.R. Rannou, M. Rey, D.R. Schaart, C.R. Schmidtlein, L. Simon, T.Y. Song, J.M. Vieira, D. Visvikis, R. Van de Walle, E. Wieërs and C. Morel. GATE: a simulation toolkit for PET and SPECT. Physics in Medicine & Biology, 49(19) (2004) 4543-4561. [9] A. Sadremomtaz and P. Taherparvar. Effect of energy window width on the contrast and SNR of diagnosis of defects in different regions of myocardial phantom, International Journal of Engineering Research and Application, 2(6) (2012) 1124-1128. [10] X. Lojacono. Image reconstruction for Compton camera with application to hadrontherapy. Imaging. INSA de Lyon, 2013. [11] A. Sadremomtaz and P. Taherparvar. The influence of filters on the SPECT image of Carlson phantom. Journal of Biomedical Science and Engineering, 6(3) (2013) 291-29. [12] K. Langeand and R. Carson. EM reconstruction algorithms for emission and transmission tomography. Journal of Computer Assisted Tomography, 8(2) (1984) 306–316. [13] A. Zoglauer. First Light for the next Generation of Compton and Pair telescopes PhD thesis, (2005). [14] P. Taherparvar and A. Sadremomtaz. Development of GATE Monte Carlo simulation for a CsI pixelated gamma camera dedicated to high resolution animal SPECT. Australasian physical & engineering sciences in medicine, 41(1) (2018) 31-39. [15] Z. Fardi and P. Taherparvar. A Monte Carlo investigation of the dose distribution for new I-125 Low Dose Rate brachytherapy source in water and in different media. Polish Journal of Medical Physics and Engineering, 25(1) (2019) 15-22. [16] A.M. Loening and S.S. Gambhir. AMIDE: A completely free system for medical imaging data analysis, Molecular Imaging, 2(3) (2013) 131-137.