[1] Y. Takeda, N. Umeda, V.T. Gritsyna and N. Kishimoto. Optical transient resonance of copper nanoparticle composites synthesized by negative ion implantation, Nucl.Instr. and Meth. B, 175 (2001) 463–467.
[2] H. Shang-Pan, W. Zhi-Qiang, Wu. Xiao-Juan and Shi Ji-Wen. Optical properties of Cr doped ZnAl2O4 nanoparticles with Spinel structure synthesized by hydrothermal method, Materials Research Express, 7 (2020) 1-11.
[3] D. Bhattacharya, S. Mukherjee, R. Kumar Mitra and Samit K Ray. Size dependent optical properties of MoS2 nanoparticles and their photo-catalytic applications, Nanotechnology, 31(14) (2020) 145701-145709.
[4] B.L. Zhu, C.S. Xie, D.W. Zeng, W.L. Song and A.H. Wang. Investigation of gas sensitivity of Sb-doped ZnO nanoparticles, Materials Chemistry and Physics, 89 (2005) 148–153.
[5] B. Ji, S. Koley, I. Slobodkin, S.Remennik and U. Banin. ZnSe/ZnS Core/Shell Quantum Dots with Superior Optical Properties through Thermodynamic Shell Growth, Nano Lett, 20 (2020) 2387–2395.
[6] S. Abolaji Rasaki, B. Zhang, K. Anbalgam, T. Thomas and M.Yang. Synthesis and application of nano-structured metal nitrides and carbides: A review, Progress in Solid State Chemistry, 50 (2018) 1-15.
[7] P. Vikram, B. Arpit, G. Rinki, Ja. Navin and P. Jitendra. Synthesis and Applications of Noble Metal Nanoparticles: A Review, Advanced Science, Engineering and Medicine, 9 (2017) 527-544.
[8] B. Schrick, J. L. Blough, A. Daniel Jones and Thomas E. Mallouk. Hydrodechlorination of Trichloroethylene to Hydrocarbons Using Bimetallic Nickel−Iron Nanoparticles, Chem. Mater, 14 )2002( 5140-5147.
[9] S. Ramasamy, D. J. Smith, P. Thangadurai, K. Ravichandran, T. Prakash, K. Padmaprasad and V. Sabarinathan. Recent study of nanomaterials prepared by inert gas condensation using ultra high vacuum chamber, pramana journal of physics, 65 (5) (2005) 881- 891.
[10] S. Gitelis, P. Piasecki, T. Turner, W. Haggard, J. Charters and R. Urban. Use of a calcium sulfate-based bone graft substitute for benign bone lesions, Orthopedics, 24 (2001) 162-166.
[11] Y. Yang, Y.Q. Zhao, A.O. Babatunde, L. Wang, Y.X. Ren and Y. Han. Characteristics and mechanisms of phosphate adsorption on dewatered alum sludge, Sep. Purif. Technol., 51 (2006) 193–200.
[12] S. Lee, J. Kim and C.H. Lee. Analysis of CaSO4 scale formation mechanism in various nanofiltration modules, J. Membr. Sci, 163 (1999) 63-68.
[13] K.S.V. Nambi, V.N. Bapat and A.K. Ganguly. Thermoluminescence of CaSO4 doped with rare earths. J.Phys. C, 7 (1974) 4403-4409.
[14] M. Maghrabi, T. Karali, P.D. Townsend and A.R. Lakshmanan. Luminescence spectra of CaSO4 with Ce, Dy, Mn and Ag codopants, J. Phys. D, 33 (2000) 470-477.
[15] N. Salah, N. D. Alharbi and M. A. Enani. Luminescence properties of pure and doped CaSO4 nanorods irradiated by 15 MeV e-beam, Nucl Instrum Methods B, 319 (2014) 107–111.
[16] M. Zahedifar and M. Mehrabi. Thermoluminescence and photoluminescence of cerium doped CaSO4 nanosheets, Nucl Instrum Methods, 268 (2010) 3517–3522.
[17] Nandkumar T. Mandlik, P. D. Sahare and S. D. Dhole. Effect of size variation and gamma irradiation on thermoluminescence and photoluminescence characteristics of CaSO4:Eu micro- and nanophosphors, Applied Radiation and Isotope, 159 (2020) 109080-109088.
[18] G. K. Williamson and W. H. Hall. X-ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall, 1 (1953) 22-31.
[19] Yashaswini, C. Pandurangappa and N. Dhananjaya. Photoluminescence studies of ytterbium doped calcium sulphate nanophosphors for display applications, Mater. Res. Express, 6 (2019) 095027-095033.
[20] G. Kitis, J. M. Gomez-Ros and J. W. N. Tuyn. Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics, J. Phys. D Appl. Phys, 31 (1998) 2636-2340.