معرفی ابزار اندازه‌گیری اختصاصی برای ارتقاء ارزیابی پارامترهای تصویر در برنامه‌های تضمین کیفیت و کنترل کیفی در سیستم‌های تصویربرداری CT

نویسندگان

1 گروه مهندسی هسته‌ای، دانشکده مهندسی انرژی، دانشگاه صنعتی شریف، تهران

2 گروه فیزیک و مهندسی پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی تهران، تهران

چکیده

برش‌نگاری رایانه‌ای (CT) یکی از پرکاربردترین ابزارهای غربالگری و تشخیصی در مراکز تصویربرداری پزشـکی است. با توجه به گزارش شماره 19 IAEA HUMAN HEALTH SERIES و برنامه اعتبارسنجی کالج رادیولوژی آمریکا (ACR)، تضمین کیفیت (QA) و کنترل کیفی (QC)، برنامه‌های اجباری برای نظارت منظم بر وضعیت سیستم به‌منظور استفاده مؤثر از پرتوهای یونیزان در امور تشخیصی از طریق تهیه و حفظ کیفیت مناسب تصویر و کاهش دز بیمار است. فانتوم‌های محاسباتی (CP < /span>) ابزار اصلی برای نظارت بر وضعیت سیستم هستند. فانتوم‌های QC تجاری محصولات گران‌قیمت هستند و به اندازه کافی برای رفع نیاز کاربر انعطاف‌پذیر نیستند. هم‌چنین اخیراً گزارش شده است که پارامترهای استاندارد مبتنی‌بر IAEA و ACR از جمله بزرگی نوفه و توان تفکیک پارامترهای دقیقی برای ارزیابی کمی عملکرد سیستم از نقطه نظر کیفیت تصویر نمی‌باشند. بنابراین در این مقاله، یک CP < /span> جدید به‌همراه یک برنامه گرافیکی ارائه شده است که می‌تواند علاوه‌بر ارائه پارامترهای استاندارد مبتنی‌بر IAEA و ACR از جمله منحنی کالیبراسیون CT، بزرگی نوفه، عدد CT، نسبت کنتراست به نوفه، توان تفکیک و یکنواختی؛ اندازه‌گیری پارامترهای جدید مورد نیاز برای ارتقاء آنالیز کمی تصاویر CT هم‌چون تابع پخش لبه (ESF)، تابع پخش خط (LSF)، تابع انتقال مدولاسیون (MTF)، توان تفکیک مکانی، طیف توان نوفه (NPS) را نیز فراهم سازد. ارزیابی تجربی ابزار ما بر سیستم تصویربرداری CT حجمی 64-slice GE Light speed VCT موجود در بیمارستان امام خمینی (ره) تهران انجام شده است. علاوه‌بر این، ما جزئیات فرآیند ساخت فانتوم خود را نیز گزارش کرده‌ایم. این امر ایده‌های مناسبی را برای ساخت فانتوم QC انعطاف‌پذیر و ارزان‌قیمتی در اختیار خوانندگان قرار می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

A measuring tool devoted to improve the evaluation of image parameters for quality assurance/quality control programs of CT scanners

نویسندگان [English]

  • Hamidreza Khodajou-Chokami 1
  • Seyed Abolfazl Hosseini 1
  • Mohammad Mohammadi 2
1
2
چکیده [English]

Computed Tomography (CT) is one of the most widely used screening and diagnostic tools in medical imaging centers. Considering IAEA HUMAN HEALTH SERIES No. 19 and the American College of Radiology (ACR) Accreditation Program, quality assurance (QA) and quality control (QC) are mandatory programs to periodically monitor the system condition to promote the effective utilization of ionization radiation for a diagnostic outcome through obtaining and retaining appropriate image quality and reduction of patient dose. Computational phantoms (CPs) are the key tool to monitor system condition. The commercial QC phantoms are expensive products and are not flexible enough for user demands. Also, it has recently been reported that standard parameters based on IAEA and ACR, including noise magnitude, and resolution, are not accurate parameters for quantitatively evaluating system performance in terms of image quality. In this paper, we designed and fabricated a new CP along with a graphical user-friendly interface program integrally called “QCT” enabling to measure IAEA/ACR-based standard image parameters and beyond metrics including CT calibration curve, CT number of multiple objects, contrast-to-noise ratio, the edge spread function, the line spread function, the modulation transfer function, spatial resolution, noise power spectrum, image noise, and uniformity. The experimental assessment of QCT was tested on a GE LightSpeed VCT multi-detector CT scanner available in Emam-Khomeini hospital complex. In addition, we reported the details of fabrication process of our QC phantom, enabling readers to create flexible and affordable QC phantoms.
 

کلیدواژه‌ها [English]

  • Quality control
  • Quality assurance
  • Noise power spectrum
  • Modulation transfer function
  • Limiting spatial resolution
  • Contrast-to-noise ratio
  • Computed tomogray
[1] J-O. Johnson. Emergency Imaging: Case Review E-Book. Elsevier Health Sciences, (2019). [2] H. Khodajou-Chokami, S.A. Hosseini, M.R. Ay, and H. Zaidi. Mcnp-fbsm: Development of mcnp/mcnpx source model for simulation of multi-slice fan-beam x-ray ct scanners, IEEE International Symposium on Medical Measurements and Applications (MeMeA), (2019). [3] IAEA. Human Health Series No. 19. Quality Assurance Programme for Computed Tomography: Diagnostic and Therapy Applications, (2011) 13-17. [4] American College of Radiology. Computed Tomography Quality Control Manual, (2017). [5] H. Khodajou-Chokami and D.V. Dylov. Data Fusion Approach for Constructing Unsupervised Augmented Voxel-Based Statistical Anthropomorphic Phantoms, IEEE International Conference on Bioinformatics and Biomedicine (BIBM), (2019). [6] H. Khodajou-Chokami, S.A. Hosseini, M.R. Ay, A. Safarzadehamiri, P. Ghafarian and H. Zaidi. A novel method for measuring the mtf of ct scanners: A phantom study, International Symposium on Medical Measurements and Applications (MeMeA), (2019). [7] S.N. Friedman, G.S. Fung, J.H. Siewerdsen, and B.M. Tsui. A simple approach to measure computed tomography (CT) modulation transfer function (MTF) and noise‐power spectrum (NPS) using the American College of Radiology (ACR) accreditation phantom, Medical physics 40.5(2013) 051907. [8] F. Zarb, L. Rainford, and M.F. McEntee. Developing optimized CT scan protocols: Phantom measurements of image quality, Radiography 17.2(2011) 109-114. [9] J.M. Boone. Determination of the presampled MTF in computed tomography, Medical Physics 28.3(2001) 356-360. [10] S. Richard, D.B. Husarik, G. Yadava, S.N. Murphy, and E. Samei. Towards task‐based assessment of CT performance: system and object MTF across different reconstruction algorithms, Medical physics, 39(7Part1) (2012) 4115-4122. [11] H. Khodajou-Chokami, A. Bitarafan, D.V. Dylov, M.S. Baghshah and S. A. Hosseini. Personalized Computational Human Phantoms via a Hybrid Model-based Deep Learning Method, IEEE International Symposium on Medical Measurements and Applications (MeMeA) (2020). [12] J.T. Bushberg, and J.M. Boone. The essential physics of medical imaging, Lippincott Williams & Wilkins, (2011). [13] N. Otsu. A threshold selection method from gray-level histograms, IEEE transactions on systems, man, and cybernetics, 9(1) (1979) 62-66. [14] GE LightSpeed™ VCT scanner, Technical Reference Manual, 5340596-1EN Revision 5, (2011). [15] P. Nowik, R. Bujila, G. Poludniowski, and A. Fransson. Quality control of CT systems by automated monitoring of key performance indicators: a two‐year study, Journal of applied clinical medical physics, 16(4) (2015) 254-265. [16] A.S. Amiri, H. Khodajou-Chokami, N. Vosoughi and M. Noorvand. Monte carlo modeling of magnification mode for quantitative assessment of image quality in mammography systems, IEEE International Symposium on Medical Measurements and Applications (MeMeA), (2019). [17] H. Khodajou-Chokami, B.V. Vahdat, A. Ebrahimi-Khankook and M. Noorvand. MamSim: A Computational Software Platform for Measuring and Optimizing Imaging and Dosimetry Parameters in Screen-Film and Digital Mammography Systems, IEEE International Symposium on Medical Measurements and Applications (MeMeA), (2020). [18] A. Rahmim and H. Zaidi. PET versus SPECT: strengths, limitations and challenges. Nuclear medicine communications, 29(3) (2008) 193-207. [19] H. Khodajou-Chokami, S.A. Hosseini, M. Ghorbanzadeh and M. Mohammadi. QCT: A Measuring Tool Dedicated to the Estimation of Image Parameters for Quality Assurance/Quality Control Programs of CT Scanners. IEEE International Symposium on Medical Measurements and Applications (MeMeA) (2020).