محاسبه تحلیلی بیناب هسته‌های پس‌زده ناشی از برهم‌کنش کشسان نوترون‌های سریع با انرژی 1/0 تا 10 مگاالکترون‌ولت به‌منظور تعیین آسیب‌های جابه‌جایی در کربن و سیلیکون

نویسندگان

1 پژوهشکده کاربرد پرتوها، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، تهران

2 پژوهشکده فیزیک و شتابگرها، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، تهران

چکیده

در این تحقیق آسیب‌های جابه‌جایی ناشی از نوترون‌های سریع با انرژی 15/0 تا 10 مگاالکترون‌ولت در کربن و سیلیکون با استفاده از کد TRIM محاسبه شده است. در این محدوده انرژی برهم‌کنش غالب، پراکندگی کشسان می‌باشد. برای استفاده از این کد اطلاعاتی مانند انرژی هسته‌ی پس‌زده‌‌شده، زاویه پراکندگی و عمقی که در آن برهم‌کنش رخ داده، ضروری است. به‌دست آوردن انرژی و زاویه پراکندگی هسته‌های پس‌زده‌شده، مستلزم دراختیارداشتن بیناب هسته‌های پراکنده‌شده می‌باشد. بیناب هسته‌های پس‌پراکنده‌شده کربن و سیلیکون با استفاده از یک روش تحلیلی برای ارتباط‌دادن توابع توزیع آماری مختلف ولی مرتبط، محاسبه شد. مقایسه داده‌های به‌دست آمده با نتایج تجربی صحت بیناب‌های محاسبه‌شده را تأیید می‌کند. محاسبات نشان می‌دهد که آسیب‌های جابه‌جایی ایجادشده در کربن کمتر از میزان آسیب‌های جابه‌جایی ایجادشده در سیلیکون می‌باشد که ناشی از آستانه انرژی جابه‌جایی بالاتر کربن می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Calculation of the recoiled nuclei spectrum due to fast neutron elastic interactions in the energy range of 0.15 to 10 MeV for determining the lattice defect in Carbon and Silicon

نویسندگان [English]

  • Peiman Rezaeian 1
  • Sepideh Shafiei 2
1
2
چکیده [English]

In this work, the damage produced in Carbon and Silicon by fast neutrons in the energy range of 0.15 to 10 MeV was calculated using TRIM code. In this range of energy, the dominant interaction is the elastic scattering. The information about recoil, nuclei energy, scattering angle and the depth in which the interaction was occurred is necessary to run TRIM code. For calculating the energy and scattering angle of recoil nuclei, the spectrum of scattered nuclei should be known. The spectrum of scattered Silicon and Carbon was calculated by using an analytical method to relate the statistical distributions to each other. Comparison of the calculated scattered spectrum with experimental one confirmed the validity of the calculation method. Calculations revealed that the damage produced in silicon is higher than the one produced in the Carbon. This is because the displacement energy threshold in Carbon is higher than the Silicon. So, using of Carbon in neutron exposure is recommended.

کلیدواژه‌ها [English]

  • Damage
  • Fast neutron
  • Silicon
  • Carbon
  • Recoil spectrum
  • Statistical distribution
[1] J.R. Lamarsh. Introduction to nuclear engineering, 2nd edition, Addison Wesley, (1983). [2] T. Tsang. Neutron damage and recovery studies of SiPMs, IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), (2018). [4] M. Guthoff, W. de Boer and S. Müller. Simulation of beam induced lattice defects of diamond detectors using FLUKA, Nuclear Instruments and Methods in Physics Research A 735(2014) 223–228. [5] U. Saha, K. Devan and S. Ganesan. A study to compute integrated dpa for neutron and ion irradiation environments using SRIM-2013, Journal of Nuclear Material, 503(2018) 30–41. [6] J.F. Ziegler, M.D. Ziegler, and J.P. Biersack. SRIM–The stopping and range of ions in matter, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(11) (2010) 1818–1823. [7] A. Zabihi, S. Incerti, Z. Francis, G. forozani, F. Semsarha, A. Moslehi, P. Rezaeian and M.A. Bernal. Computational approach to determine the relative biological effectiveness of fast neutrons using the Geant4-DNA toolkit and a DNA atomic model from the Protein Data Bank, PHYSICAL REVIEW E, 99(2019) 052404. [8] M.B. Chadwick, M. Herman, P. Obložinský, M.E. Dunn, Y. Danon, A.C. Kahler, D.L. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, R. Brewer, D.A. Brown, R. Capote, A.D. Carlson, Y.S. Cho, H. Derrien, K. Guber, G.M. Hale and P.G.Young. ENDF/B-VII. 1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nuclear Data Sheets, 112(12) (2011) 2887–2996. [9] J.B. Marion and F.C. Young. Nuclear reaction analysis. Graphs and tables Amsterdam: North-Holland publications, )1968(. [10] R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath and F.A. Garner. Erratum to “On the use of SRIM for computing radiation damage exposure” [Nucl. Instrum. Methods Phys. Res. B 310(2013) 75–80], Nuclear Instruments and Methods in Physics Research B459(2019) 196–197. [11] M.J. Norgett, M.T. Robinson and I.M. Torrens. A proposed method of calculating displacement dose rates, Nuclear Engineering and Design, 33(1975) 50–54. [12] W.B. Gilboy and J.H. Towle, a neutron scattering study of 56Fe, Nuclear Physics, 64(1) (1965) 130–146. [13] D. Lister and A. Sayres. Elastic Scattering of Neutrons from Carbon and Oxygen in the Energy Range 3.0 to 4.7 MeV, Physical Review, 143(1966) 748–758.