[1] S. Iijima. Helical microtubules of graphitic carbon. Nature, 354 (1991) 56-58.
[2] P. Ajayan, O. Stephan, C. Colliex, and D. Trauth. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science, 265(1994)1212-1214.
[3] K. Arbabi, M. M. Larijani, and M. Ramazanov. Evaluation of a new ionisation chamber fabricated with carbon nanotubes. Radiation Protection Dosimetry, 141(2010) 222-227.
[4] N. Yamamoto, R. Guzman de Villoria, and B. L. Wardle. Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes. Composites Science and Technology, 72 (2012) 2009-2015.
[5] D. Moon, J. Obrzut, J. F. Douglas, T. Lam, K. K. Koziol, and K. B. Migler. Three dimensional cluster distributions in processed multi-wall carbon nanotube polymer composites. Polymer, 55 (2014) 3270-3277.
[6] F. Puch and C. Hopmann. Morphology and tensile properties of unreinforced and short carbon fibre reinforced Nylon 6/multiwalled carbon nanotube-composites. Polymer, 55 (2014) 3015-3025.
[7] D. Vennerberg, R. Hall, and M. R. Kessler. Supercritical carbon dioxide-assisted silanization of multi-walled carbon nanotubes and their effect on the thermo-mechanical properties of epoxy nanocomposites. Polymer, 55 (2014) 4156-4163.
[8] S. Gong, Z. H. Zhu, and S. A. Meguid. Anisotropic electrical conductivity of polymer composites with aligned carbon nanotubes. Polymer, 56 (2015) 498-506.
[9] S. Malekie and F. Ziaie. Study on a novel dosimeter based on polyethylene–carbon nanotube composite. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 791 (2015) 1-5.
[11] Z. Ounaies, C. Park, K. E. Wise, E. J. Siochi, and J. S. Harrison. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Composites Science and Technology, 63 (2003) 1637-1646.
[12] N. Hu, Z. Masuda, C. Yan, G. Yamamoto, H. Fukunaga, and T. Hashida.The electrical properties of polymer nanocomposites with carbon nanotube fillers. Nanotechnology, 19 (2008) 215701.
[13] J. E.Mark. Physical Properties of Polymers Handbook.Ohio, Springer, 2007.
[14] Y. S. Song and J. R. Youn. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon, 43 (2005) 1378-1385.
[15] Alamusi, N. Hu, H. Fukunaga, S. Atobe, Y. Liu, J. Li. Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites. Sensors, 11 (2011) 10691.
[16] S. Malekie, F. Ziaie, S. Feizi, A. Esmaeli. Dosimetry characteristics of HDPE-SWCNT nanocomposite for real time application. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 833 (2016) 127-133.
[17] S. Malekie, F. Ziaie. A two-dimensional simulation to predict the electrical behavior of carbon nanotube/polymer composites. Journal of Polymer Engineering, (2016).
[18] S. Malekie, F. Ziaie, A. Esmaeli. Study on dosimetry characteristics of polymer–CNT nanocomposites: Effect of polymer matrix. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 816 (2016) 101-105.