[1] Committee on Health Risks of Exposure to Radon (BEIR VI), National Research Council. Health Effects of Exposure to Radon: BEIR VI. (1999).
[2] National Council on Radiation Protection Measurements. Ionizing Radiation Exposure Population of the United States, NCRP Report 93 (1987).
[3] I. Szoke, A. Farkas, I. Balashazy. 3D-modelling of radon-induced cellular radiobiological effects in bronchial airway bifurcations: Direct versus bystander effects. Int. J. Radiat. Biol. 88(6) (2012) 477- 492.
[4] S.G. Sawant, G. Randers-Pehrson R.C. Geard, D.J. Brenner, E.J. Hall. The Bystander Effect in Radiation Oncogenisis : I. Transformation in C3H 10T1/2 cells in vitro Can be Initiated in the Uniradiated Neighbors of Irradiated Cells. Radiat. Res. 155(3) (2001) 397–401.
[5] W. Hofmann, H. Fakir, I. Aubineau-Laniece, P. Pihet. Interaction of Alpha Particles at the Cellular Level- Implication for the Radiation Weighting Factor. Radiat. Prot. Dosim. 17 (2004) 493–500.
[6] R.S. Caswell, J.J. Coyne. Microdosimetry of Radon and Radon Daughters. Radiat. Prot. Dosim. 31 (1990) 395–398.
[7] W. Hofmann, G. Menache, J. Crawford- Brown, C.S. Caswell, R. Karam. Modelling Energy Deposition and Cellular Radiation effects in Human Bronchial Epithelium by Radon Progeny Alpha Particles. Health. Phys. 78(4) (2000) 377-393.
[8] R.S. Cotran, V. Kumar, S.L. Robbins. Disease of organ systems: The Lung. In: Pathologic Basis of Disease (1989) 797– 810.
[9] W.H. Ellett, N.S. Nelson. Epidemiology and risk assessment: Testing models for radon-induced lung cancer. In: Indoor Air and Human Health. (1985) 79–107.
[10] International Commission on Radiological Protection, The Human Respiratory Tract Model for Radiological Protection (ICRP 66).
[11] R.R. Mercer, M.L. Russell, J.D. Crapo. Radon dosimetry based on the depth distribution of nuclei in human and rat lungs. Health. Phys. 66(1) (1991) 117–130.
[12] D. Nikezic, K.N. Yu. Alpha hit frequency due to radon decay products in human lung cells. Int. J. Radiat .Biol. 77(5) (2001) 559-565.
[13] I. Aubineau-Laniece, P. Pihet, , R. Winkler, W. Hofmann D.E. Charlton. Monte Carlo Code for Microdosimetry of Inhaled Alpha Emitters. Radiat. Prot. Dosim. l 99 (2002) 463–468.
[14] D.J. Brenner, J.B. Little, R.K. Sachs. The Bystander Effect in Radiation Oncogenisis : II. A Quantitative Model. Radiat. Res. 155 (2001) 402–408.
[15] D.J Brenner, R.K. Sachs. Do Low Dose-Rate Bystander Effects Influence Domestic Radon Risks? Int. J. Radiat. Biol. 78(7) (2002) 593–604.
[16] J. Crawford-Brown, W. Hofmann. Correlated hit probability and cell transformation in an effect specific track length model applied to in vitro alpha irradiation. Radiat. Environ. Biophys. 40 (2001) 317–323.
[17] F.H. Attix. Introduction to Radiological Physics and Radiation Dosimetry, (1986).
[18] R.S. Caswell, J.J. Coyne. Alpha particle spectra and microdosimetry of radon daughters. In: Cross FT (ed). Indoor Radon and lung cancer. Richard, WA: Bettelle Press (1992) 279-289.
[19] R.S. Caswell, L.R. Karam, J.J. Coyne. Systematics of alpha particle energy spectra and lineal energy spectra for Radon daughters. Radiat. Prot. Dosim. 52 (1994) 377–380.