نوع مقاله : مقاله پژوهشی
نویسندگان
1 گروه فیزیک - دانشگاه بوعلی سینا
2 گروه فیزیک پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی اصفهان
3 مرکز تحقیقات سرطان، پژوهشکده سرطان، پژوهشکده سلامت ابن سینا، دانشگاه علوم پزشکی همدان
چکیده
عنوان مقاله [English]
نویسندگان [English]
Magnetic hyperthermia using Fe₃O₄ nanoparticles offers a targeted and minimally invasive strategy for lung cancer treatment. In this study, a two dimensional computational model was developed in COMSOL Multiphysics 6.1 to simulate heat generation by uniformly distributed Fe₃O₄ nanoparticles under a 300 kHz, 150 A alternating magnetic field. The model incorporated anatomically realistic domains representing the lung, tumor, and heart tissues, along with a silver shielding layer designed to attenuate magnetic flux and protect the heart from excessive heating. Electromagnetic and thermal behavior were modeled using Maxwell’s equations and a porous-media form of Pennes’ bioheat equation, accounting for blood perfusion, respiratory airflow, and metabolic heat generation. Simulation results demonstrated that the tumor core reaches therapeutic hyperthermia levels (43–46 °C), while the silver shield effectively maintains cardiac temperatures below 39 °C. Temperature gradients at the tumor margins, caused by convective cooling, highlight the importance of optimizing nanoparticle concentration and field intensity. This model provides a physiologically realistic and computationally validated framework that enhances the safety and efficacy of magnetic hyperthermia, supporting its potential translation into clinical applications.